浙江大学学报(工学版)  2020, Vol. 54 Issue (5): 870-878    DOI: 10.3785/j.issn.1008-973X.2020.05.004
 土木工程、交通工程

1. 火箭军工程大学 作战保障学院，陕西 西安 710025
2. 重庆工业职业技术学院 建筑工程与艺术设计学院，重庆 401120
3. 95356部队，湖南 衡阳 421800
Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station
Jie LAI1(),Yun LIU1,2,*(),Jian-ping XIN3,Wei WANG1,Chen-qiang GAO1,Hai-bo ZHU1
1. College of Combat Support, Rocket Force University of Engineering, Xi’an 710025, China
2. Faculty of Architectural and Enviromental Engineering, Chongqing Industry Polytechnic College, Chongqing 401120, China
3. 95356 Troops, Hengyang 421800, China
 全文: PDF(1741 KB)   HTML

Abstract:

Shaking table test and numerical analysis were carried out on the reinforced slope at Dali West Railway Station in YunNan province, China, for obtaining the bending moment of double-row anti-slide piles, the axial force of anchors, the acceleration response and the ultimate failure of the reinforced slope. Results show that the acceleration response of the slope is related to the different relative elevations of measuring points, which could be represented as the higher the relative elevation of measuring points, the more obvious the acceleration response. The dynamic characteristics and the law of acceleration response of rocks and soils within the slope will be changed when cracks appear in the slope. The bending moment distribution of anti-slide piles triggered by earthquake is close to the parabola shape, the maximum value of which would appear near the boundary between rock and soil. The bending moment of the anti-slide piles increases nonlinearly with the increment of the peak ground acceleration (PGA) of input seismic waves. The dynamic axial force of the bolt at the peak time in the earthquake (4 m/s2) is three times more than the one in the static condition, and the seismic action is the decisive factor for the axial force of the bolt. Based on the action of the bolt, the ultimate failure surface of the slope is located in the deep part of the slope 2#, and the location of the failure surface is composed of the sliding failure in the upper-middle body and the top-over failure within the lower body of the slope 2#.

Key words: shaking table test    anti-slide pile    anchor    bending moment    failure surface

 CLC: P 642.2

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 赖杰 刘云 辛建平 王炜 高成强 朱海波

#### 引用本文:

Jie LAI,Yun LIU,Jian-ping XIN,Wei WANG,Chen-qiang GAO,Hai-bo ZHU. Shaking table test and numerical analysis on reinforced slope at Dali West Railway Station. Journal of ZheJiang University (Engineering Science), 2020, 54(5): 870-878.

#### 链接本文:

 图 1  大理西站支护边坡示意图 表 1  各材料基本物理力学参数 表 2  模型主要相似常数 图 2  试验支护边坡示意图 图 3  模型试验中输入地震激励（汶川，2 m/s2） 图 4  支护边坡数值模拟模型示意图 图 5  坡面加速度的试验与数值结果对比 图 6  监测点A加速度傅立叶谱的试验与数值结果对比 图 7  抗滑桩弯矩分布图 表 3  抗滑桩最大弯矩对比统计表 图 8  锚杆测点位置图 图 9  锚杆受力情况示意图 图 10  试验中监测点永久位移响应 图 11  模型在地震后的破坏状态图 图 12  支护边坡剪切破坏图
 1 涂杰文. 抗滑桩加固滑坡体地震反应离心机模型试验及分析[D]. 哈尔滨: 哈尔滨工业大学, 2015.TU Jie-wen. Centrifugal model test and analysis on seismic response of landslide mass reinforced by anti-slide pile [D]. Harbin: Harbin Institute of Technology, 2015. 2 ZHANG J, LIAO Y, MA Y Seismic damage of earth structures of road engineering in the 2008 Wenchuan earthquake[J]. Environmental Earth Sciences, 2012, 65 (4): 987- 993 doi: 10.1007/s12665-011-1519-5 3 AI-DEFAE A H, KNAPPETT J A Newmark sliding block model for pile-reinforced slopes under earthquake loading[J]. Soil Dynamics and Earthquake Engineering, 2015, 75: 265- 278 doi: 10.1016/j.soildyn.2015.04.013 4 AI-DEFAE A H. Seismic performance of pile-reinforced slopes [D]. Dundee: University of Dundee, 2013. 5 付晓, 张建经, 周立荣 多级框架锚索和抗滑桩联合作用下边坡抗震性能的振动台试验研究[J]. 岩土力学, 2017, 38 (2): 462- 470FU Xiao, ZHANG Jian-jing, ZHOU Li-rong Shaking table test of seismic response of slope reinforced by combination of anti-slide piles and multi-frame foundation beam with anchor cable[J]. Rock and Soil Mechanics, 2017, 38 (2): 462- 470 6 曲宏略, 张建经, 朱大鹏 预应力锚索桩板墙抗震设计计算方法研究[J]. 岩石力学与工程学报, 2013, (Suppl.2): 4149- 4156QU Hong-lue, ZHANG Jian-jing, ZHU Da-peng Research on aseismic design of prestressed anchor sheet pile wall[J]. Chinese Journal of Rock Mechanics and Engineering, 2013, (Suppl.2): 4149- 4156 7 赖杰, 郑颖人, 刘云, 等 地震作用下双排抗滑桩支护边坡振动台试验研究[J]. 岩土工程学报, 2014, 36 (4): 680- 686 LAI Jie, ZHENG Ying-ren, LIU Yun, et al Shaking table tests on double-row anti-slide piles of slopes under earthquakes[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (4): 680- 686 doi: 10.11779/CJGE201404012 8 ADACHI Y, MIURA K, MIURA K M, et al. Model shaking table test on the damage to pile foundation in earthquake-induced lateral flow of ground with non-liquefied surface layer [C]// Proceedings of the 13th International Offshore and Polar Engineering Conference. Honolulu: International Society Offshore and Polar Engineers, 2003: 756-761. 9 雷达, 蒋关鲁, 刘伟豪, 等 前后排抗滑桩加固滑坡桥基的振动台试验研究[J]. 岩石力学与工程学报, 2017, 36 (9): 2297- 2304LEI Da, JIANG Guan-lu, LIU Wei-hao, et al Shaking table test study on bridge foundation reinforcement with the front and back row anti-slide piles on slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2017, 36 (9): 2297- 2304 10 林皋, 朱彤, 林蓓, 等 结构动力模型试验的相似技巧[J]. 大连理工大学学报, 2000, 40 (1): 1- 8 LIN Gao, ZHU Tong, LIN Bei, et al Similarity technique for dynamic structural model test[J]. Journal of Dalian University of Technology, 2000, 40 (1): 1- 8 doi: 10.3321/j.issn:1000-8608.2000.01.001 11 何川, 李林, 张景, 等 隧道穿越断层破碎带震害机理研究[J]. 岩土工程学报, 2014, 36 (3): 427- 434 HE Chuan, LI Lin, ZHANG Jing, et al Seismic damage mechanism of tunnels through fault zones[J]. Chinese Journal of Geotechnical Engineering, 2014, 36 (3): 427- 434 doi: 10.11779/CJGE201403004 12 ZONG Z H, ZHOU R, HUANG X Y, et al Seismic response study on a multi-span cable-stayed bridge scale model under multi-support excitations. Part I: shaking table tests[J]. Journal of Zhejiang University-Science A: Applied Physics and Engineering, 2014, 15 (5): 351- 363 13 陈国兴, 左熹, 王志华, 等 地铁车站结构近远场地震反应特性振动台试验[J]. 浙江大学学报:工学版, 2010, 44 (10): 1955- 1961CHEN Guo-xing, ZUO Xi, WANG Zhi-hua, et al Shaking table model test of subway station structure under far field and near field ground motion[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (10): 1955- 1961 14 罗永红. 地震作用下复杂斜坡响应规律研究[D].成都: 成都理工大学, 2011.LUO Yong-hong. Study on complex slopes response law under earthquake action [D]. Chengdu: Chengdu University of Technology, 2011. 15 Itasca Consulting Group Inc. Fast Lagrangian analysis of continua in 3 dimensions [M]. Minneapolis: Itasca Consulting Group Inc., 2005. 16 黄润秋 汶川8.0级地震触发崩滑灾害机制及其地质力学模式[J]. 岩石力学与工程学报, 2009, 28 (6): 1239- 1249 HUANG Run-qiu Mechanism and geomechanical modes of landslide hazards triggered by Wenchuan 8.0 earthquake[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (6): 1239- 1249 doi: 10.3321/j.issn:1000-6915.2009.06.021
 [1] 唐德琪,俞峰,黄祥国,陈海兵,夏唐代. 开挖诱发坑内既有基桩附加内力的模型试验[J]. 浙江大学学报(工学版), 2019, 53(8): 1457-1466. [2] 张超, 臧勇, 管奔, 秦勤. 基于曲率积分的双金属复合板辊式矫直过程解析[J]. 浙江大学学报(工学版), 2017, 51(8): 1575-1586. [3] 邱子义,韩同春,豆红强,李智宁. 桩后及桩侧土拱共同作用的抗滑桩桩间距分析[J]. 浙江大学学报(工学版), 2016, 50(3): 551-558. [4] 吴有霞, 王湛, 钟润辉, 李玲玲, 冯智宏, 王起. 软基煤场堆载挡风墙桩基桩土共同作用分析[J]. J4, 2013, 47(3): 502-507. [5] 刘永莉,孙红月,于洋,詹伟,尚岳全. 基于BOTDR监测技术抗滑桩上滑坡推力确定[J]. J4, 2012, 46(5): 798-803. [6] 刘永莉, 孙红月, 于洋, 詹伟， 尚岳全. 抗滑桩内力的BOTDR监测分析[J]. J4, 2012, 46(2): 243-249. [7] 王振宇,张劲帆,方成,刘国华,蒋建群. 半刚性节点初始刚度的组件式计算模型[J]. J4, 2012, 46(11): 1998-2006. [8] 常林越, 王金昌, 朱向荣, 谢新宇. 水平受荷长桩弹塑性解析计算[J]. J4, 2010, 44(10): 2029-2035. [9] 肖南 顾强强. 钢柱脚抗剪键埋深的对偶函数积分变换解法[J]. J4, 2009, 43(2): 353-359.