Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 951-959    DOI: 10.3785/j.issn.1008-973X.2018.05.015
机械与能源工程     
平面关节型机器人关节力矩的卡尔曼估计
张铁, 梁骁翃
华南理工大学 机械与汽车工程学院, 广东 广州 510640
Kalman filter-based SCARA robot joint torque estimation
ZHANG Tie, LIANG Xiao-hong
School of Mechanical and Automotive Engineering, South China University of Technology, Guangzhou 510640, China
 全文: PDF(3008 KB)   HTML
摘要:

为了解决常用测电流获取机器人关节力矩方法中,各种噪声干扰使所得关节力矩波动较大,影响机器人控制信息可靠性的问题,提出基于机器人动力学模型的卡尔曼滤波方法对关节力矩进行估计.运用牛顿欧拉方法对平面关节型机器人(SCARA)进行动力学建模,获得非线性连续的机器人关节力矩方程.通过多元函数一阶泰勒展开将非线性连续的关节力矩方程转换为关于关节力矩的线性离散状态空间模型.利用卡尔曼滤波方法对关节力矩进行估计.实验结果表明,该关节力矩估计方法对机器人前两轴的关节力矩估计精度较好,与均值滤波方法相比均方根误差分别减少了2.9%和14.7%;且实时性较好,完成一次估计平均需时不超过1 ms.但关节力矩值的估计精度受动力学模型精度的影响.

Abstract:

A dynamic model based Kalman estimation method was designed for joint torque estimation in order to solve the problem that robot control information reliability was reduced because of the fluctuating joint torque value obtained by commonly used current measurement method while the current was affected by noise generated during robot operation. The Newton-Euler method was used for SCARA robot dynamic modeling and the nonlinear continuous joint torque equations were obtained. Then the nonlinear continuous joint torque equations were converted to linear discrete state space model of joint torque by first-order Taylor expansion of multivariate functions. The Kalman filter method was performed to estimate joint torque. Experimental results showed that the proposed method had better estimation accuracy for the first two axes of the robot and the mean square root error decreases by 2.9% and 14.7%, respectively, compared to mean filtering method. The real-time performance was good that the average time required to complete an estimation did not exceed 1 ms. The joint torque estimation accuracy was affected by the SCARA robot dynamic model accuracy.

收稿日期: 2017-04-20 出版日期: 2018-11-07
CLC:  TP24  
基金资助:

国家高档数控机床与基础制造装备科技大专项资助项目(2015ZX04005006);广东省科技重大专项资助项目(2014B090921004,2015B010918002);广州市科技重大资助项目(201604040009).

作者简介: 张铁(1968-),男,教授,博导,从事机器人技术等研究.orcid.org/0000-0001-9716-3970.E-mail:merobot@scut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

张铁, 梁骁翃. 平面关节型机器人关节力矩的卡尔曼估计[J]. 浙江大学学报(工学版), 2018, 52(5): 951-959.

ZHANG Tie, LIANG Xiao-hong. Kalman filter-based SCARA robot joint torque estimation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 951-959.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.015        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/951

[1] DZHANKHOTOV V, PYRHÖNEN J. PASSIVE L C. Filter design considerations for motor applications[J]. IEEE Transactions on Industrial Electronics, 2013, 60(10):4253-4259.
[2] AKAGI H, ISOZAKI K. A hybrid active filter for a three-phase 12-pulse diode rectifier used as the front end of a medium-voltage motor drive[J]. IEEE Transactions on Power Electronics, 2012, 27(1):69-77.
[3] KINSHEEL A, TAHA Z, DEBOUCHA A, et al. Robust least square estimation of the CRS A465 robot arms dynamic model parameters[J]. Journal of Mechanical Engineering Research, 2012, 4(3):88-89.
[4] 牛里,杨明,王庚,等.基于无差拍控制的永磁同步电机鲁棒电流控制算法研究[J].中国电机工程学报,2013,33(15):78-85. NIU Li, YANG Ming, WANG Geng, et al. Research on the robust current control algorithm of permanent magnet synchronous motor based on deadbeat control principle[J]. Proceedings of the CSEE, 2013, 33(15):78-85.
[5] 王东文,宋词,周伟.自适应滤波在永磁同步电机电流环优化中的应用[J].电工技术学报,2014(增刊1):90-94. WANG Dong-wen, SONG Ci, ZHOU Wei. Adaptive filter applied in optimizing current loop of permanent magnet synchronous Motor[J]. Transactions of China Electrotechnical Society, 2014(supp11):90-94.
[6] 张海洋,许海平,方程,等.基于谐振数字滤波器的直驱式永磁同步电机转矩脉动抑制方法[J].中国电机工程学报,2018,38(4):1222-1231+1299. ZHANG Hai-yang, XU Hai-ping, FANG Cheng, et al. Torque ripple suppression method of direct-drive permanent magnet synchronous motor based on resonant digital filter[J], Proceedings of the CSEE, 2018, 38(4):1222-1231+1299.
[7] GROTJAHN M, DAEMI M, HEIMANN B. Friction and rigid body identification of robot dynamics[J]. International Journal of Solids and Structures, 2001, 38(10):1889-1902.
[8] 杨松,王毅,苏宝库.高精确度伺服转台控制系统中的扰动力矩补偿[J].电机与控制学报,2009,13(4):615-619. YANG Song, WANG Yi, SU Bao-ku. Study on disturbance torques compensation in high precise servo turntable control system[J]. Electric Machines and Control, 2009, 13(4):615-619.
[9] 赵辉,冯英浚,张志忠,等.神经网络用于永磁同步电机系统波动力矩补偿[J].哈尔滨工业大学学报,2003,35(1):5-7. ZHAO Hui, FENG Ying-jun, ZHANG Zhi-zhong, et al. Application of neural network for ripple torque compensation of permanent magnet synchronous motor system[J]. Journal of Harbin Institute of Technology, 2003, 35(1):5-7.
[10] VAN DAMME M, BEYL P, Vanderborght B, et al. Estimating robot end-effector force from noisy actuator torque measurements[C]//Robotics and Automation (ICRA), 2011 IEEE International Conference on. Shanghai:IEEE, 2011:1108-1113.
[11] ZOLLO L, LOPEZ E, SPEDALIERE L, et al. Identification of dynamic Parameters for robots with elastic joints[J]. Advances in Mechanical Engineering, 2015. 7(2):843186-843186.
[12] ZHU S, CHEN Q, WANG X, et al. Dynamic modelling using screw theory and nonlinear sliding mode control of serial robot[J]. International Journal of Robotics and Automation, 2016, 31(1):63-75.
[13] CRAIG J J. Introduction to robotics:mechanics and control, third edition[M]. Upper Saddle River:Pearson Prentice Hall, 2005.
[14] SOUSA C J S D. Dynamic model identification of robot manipulators:Solving the physical feasibility problem[D]. Coimbra:University of Coimbra, 2014.
[15] 陈金广,李洁,高新波.双重迭代变分贝叶斯自适应卡尔曼滤波算法[J].电子科技大学学报,2012,41(3):359-363. CHEN Jin-guang, LI Jie, GAO Xin-bo. Dual Recursive Variational Bayesian Adaptive Kalman Filtering Algorithm[J], Journal of University of Electronic Science and Technology of China, 2012, 41(3):359-363.
[16] FARSONI S, LANDI C T, FERRAGUTI F, et al. Compensation of Load Dynamics for Admittance Controlled Interactive Industrial Robots Using a Quaternion-Based Kalman Filter[J]. IEEE Robotics and Automation Letters, 2017, 2(2):672-679.
[17] RIGATOS G G. Control and disturbances compensation in underactuated robotic systems using the derivative-free nonlinear Kalman filter[J]. Robotica, 2017, 35(3):687-711.
[18] ORNELAS F, SANCHEZ E N, LOUKIANOV A G. Real-time inverse optimal control for a planar robot[C]//Intelligent Control (ISIC), 2010 IEEE International Symposium on. Yokohama:IEEE, 2010:2332-2337.
[19] ASL R M, HAGH Y S, PALM R. Robust control by adaptive non-singular terminal sliding mode[J]. Engineering Applications of Artificial Intelligence, 2017, 59:205-217.
[20] 钟万勰,吴志刚,谭述君.状态空间控制理论与计算[M].北京:科学出版社,2007.

[1] 王晨学, 平雪良, 徐超. 解决约束平面偏移问题的机械臂闭环标定[J]. 浙江大学学报(工学版), 2018, 52(11): 2110-2119.
[2] 赵晓东, 刘作军, 陈玲玲, 杨鹏. 下肢假肢穿戴者跑动步态识别方法[J]. 浙江大学学报(工学版), 2018, 52(10): 1980-1988.
[3] 王硕朋, 杨鹏, 孙昊. 听觉定位数据库构建过程优化[J]. 浙江大学学报(工学版), 2018, 52(10): 1973-1979.
[4] 傅晓云, 雷磊, 杨钢, 李宝仁. 喷水推进型水下滑翔机的水平翼参数配置及定常运动分析[J]. 浙江大学学报(工学版), 2018, 52(8): 1499-1508.
[5] 都明宇, 鲍官军, 杨庆华, 王志恒, 张立彬. 基于改进支持向量机的人手动作模式识别方法[J]. 浙江大学学报(工学版), 2018, 52(7): 1239-1246.
[6] 陈迪剑, 徐一展, 王斌锐. 基于双生成函数的步行机器人最优步态生成[J]. 浙江大学学报(工学版), 2018, 52(7): 1253-1259.
[7] 秦超, 梁喜凤, 路杰, 彭明, 金超杞. 七自由度番茄收获机械手的轨迹规划与仿真[J]. 浙江大学学报(工学版), 2018, 52(7): 1260-1266.
[8] 李中雯, 王斌锐, 陈迪剑. 有并联脊柱的四足机器人步态规划[J]. 浙江大学学报(工学版), 2018, 52(7): 1267-1274.
[9] 柯显信, 张文朕, 杨阳, 温雷. 仿人机器人多传感器定位系统[J]. 浙江大学学报(工学版), 2018, 52(7): 1247-1252.
[10] 李泚泚, 田国会, 张梦洋, 张营. 基于本体的物品属性类人认知及推理[J]. 浙江大学学报(工学版), 2018, 52(7): 1231-1238.
[11] 王禹, 韦巍. 采用频域Prony方法估计信号重叠双分量[J]. 浙江大学学报(工学版), 2018, 52(6): 1157-1166.
[12] 王尧尧, 顾临怡, 陈柏, 吴洪涛. 水下机器人-机械手系统非奇异终端滑模控制[J]. 浙江大学学报(工学版), 2018, 52(5): 934-942.
[13] 王扬威, 兰博文, 刘凯, 赵东标. 形状记忆合金丝驱动的柔性机械臂建模与实验[J]. 浙江大学学报(工学版), 2018, 52(4): 628-634.
[14] 吴炳龙, 曲道奎, 徐方. 基于力/位混合控制的工业机器人精密轴孔装配[J]. 浙江大学学报(工学版), 2018, 52(2): 379-386.
[15] 潘立, 鲍官军, 胥芳, 张立彬. 六自由度装配机器人的动态柔顺性控制[J]. 浙江大学学报(工学版), 2018, 52(1): 125-132.