Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (5): 960-965    DOI: 10.3785/j.issn.1008-973X.2018.05.016
机械与能源工程     
表面芯吸性对淬火过程中沸腾传热特性的影响
牟林巍1, 张宇鸿1, 李佳琦1, 张嘉懿1, 蒋平2, 范利武1
1. 浙江大学 热工与动力系统研究所, 浙江 杭州 310027;
2. 北京宇航系统工程研究所, 北京 101300
Surface wicking effect on boiling heat transfer during quenching
MOU Lin-wei1, ZHANG Yu-hong1, LI Jia-qi1, ZHANG Jia-yi1, JIANG Ping2, FAN Li-wu1
1. Institute of Thermal Science and Power Systems, Zhejiang University, Hangzhou 310027, China;
2. Beijing Institute of Astronautical System Engineering, Beijing 101300, China
 全文: PDF(4262 KB)   HTML
摘要:

研究表面芯吸性对淬火过程中的冷却速率和沸腾传热特性的影响.采用质量分数约为50%的氢氟酸溶液对不锈钢球表面进行化学腐蚀,在恒温50℃时通过改变腐蚀时间得到具有不同芯吸性的试样并对表面芯吸量和初始芯吸通量进行定量表征.在常压下的饱和水中对所制备的芯吸表面进行可视化淬火实验.结果表明,原始不锈钢表面不具有芯吸性,随着腐蚀时间的增加表面芯吸能力也逐渐增强.经过腐蚀3 min之后,表面芯吸通量达到20 μL/(mm2·s).该芯吸表面使淬火冷却时间相较于原始表面缩短约80%,临界热流密度提高了约84%.构建表面芯吸性可以有效地增大固液接触面积并加剧表面汽膜波动,抑制了稳定膜态沸腾的出现,强化了过渡态沸腾传热.

Abstract:

The effect of surface wicking on the cooling rate and boiling heat transfer during quenching was analyzed. Stainless steel sphere samples with various surface wicking abilities were prepared by varying the etching time in a hydrofluoric acid solution (mass concentration of about 50%) at a constant temperature of 50℃. The wicking volume and initial wicking flux on these sample surfaces were quantified. Visualized quenching experiments were performed on these samples in saturated water at the atmospheric pressure. Water could not be wicked by the original stainless steel surface, and surface wicking ability was gradually enhanced with increasing the etching time. After being etched by 3 minutes, the surface wicking flux reached 20 μL/(mm2·s). As compared to the original surface, the use of this wicking surface was exhibited to shorten the cool-down time by about 80%, and the critical heat flux was improved by about 84%. The construction of surface wicking can increase the solid-liquid contact areas and intensify the fluctuations of vapor film, suppress the emergence of stable film boiling, and lead to significant heat transfer enhancement during transition boiling.

收稿日期: 2017-05-21 出版日期: 2018-11-07
CLC:  TK124  
基金资助:

国家自然科学基金资助项目(51206142).

通讯作者: 范利武,男,研究员.orcid.org/0000-0001-8845-5058.     E-mail: liwufan@zju.edu.cn
作者简介: 牟林巍(1992-),男,硕士生,从事气液相变传热研究.orcid.org/0000-0002-0963-8348.E-mail:moulinwei@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

牟林巍, 张宇鸿, 李佳琦, 张嘉懿, 蒋平, 范利武. 表面芯吸性对淬火过程中沸腾传热特性的影响[J]. 浙江大学学报(工学版), 2018, 52(5): 960-965.

MOU Lin-wei, ZHANG Yu-hong, LI Jia-qi, ZHANG Jia-yi, JIANG Ping, FAN Li-wu. Surface wicking effect on boiling heat transfer during quenching. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(5): 960-965.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.05.016        http://www.zjujournals.com/eng/CN/Y2018/V52/I5/960

[1] BUONGIORNO J. Can corrosion and CRUD actually improve safety margins in LWRs?[J]. Annals of Nuclear Energy, 2014, 63(1):9-21.
[2] VOROBYEV A Y, GUO C. Metal pumps liquid uphill[J]. Applied Physics Letters, 2009, 94(22):986.
[3] COURBIN L, BIRD J C, REYSSAT M, et al. Dynamics of wetting:from inertial spreading to viscous imbibition[J], Journal of Physics Condensed Matter, 2009, 21(46):464127.
[4] LITER S G. KAVIANY M. Pool-boiling CHF enhancement by modulated porous-layer coating:theory and experiment[J]. International Journal of Heat and Mass Transfer, 2001, 44(22):4287-4311.
[5] WASHBURN E W. The Dynamics of Capillary Flow. Physical Review, 1921, 17(3):273-283.
[6] 纪峰,李娜,宋冉风,等.纺织材料芯吸性能建模预测研究进展[J].纺织学报,2016,37(9):162-168. JI Feng, LI Na, SONG Ran-feng, et al. Review of studies on textile wicking modeling[J]. Journal of Textile Research, 2016, 37(9):162-168.
[7] KIM H D, KIM M H. Effect of nanoparticle deposition on capillary wicking that influences the critical heat flux in nanofluids[J]. Applied Physics Letters, 2007, 91(1):718.
[8] HENDRICKS T J, KRISHNAN S, CHIOI C, et al. Enhancement of pool-boiling heat transfer using nanostructured surfaces on aluminum and copper[J]. International Journal of Heat and Mass Transfer, 2010, 53(15-16):3357-3365.
[9] RAHMAN M M, OLCEROGLU E, MCCARTHY M. Role of wickability on the critical heat flux of structured superhydrophilic surfaces[J]. Langmuir, 2014, 30(37):11225-11234.
[10] LI L, BREEDVELD V, HESS D W. Creation of superhydrophobic stainless steel surfaces by acid treatments and hydrophobic film deposition[J]. ACS Applied Materials and Interfaces, 2012, 4(9):4549.
[11] AHN H S, PARK G, KIM J M, et al. The effect of water absorption on critical heat flux enhancement during pool boiling[J]. Experimental Thermal and Fluid Science, 2012, 42(5):187-195.
[12] FAN L W, LI J Q, LI D Y, et al. Regulated transient pool boiling of water during quenching on nanostructured surfaces with modified wettability from superhydrophilic to superhydrophobic[J]. International Journal of Heat and Mass Transfer, 2014, 76(6):81-89.
[13] BURGGRAF O R. An Exact Solution of the Inverse Problem in Heat Conduction Theory and Applications[J]. ASME Journal of Heat Transfer, 1964, 86(3):373.
[14] FAN L W, LI J Q, ZHANG L, et al. Pool boiling heat transfer on a nanoscale roughness-enhanced superhydrophilic surface for accelerated quenching in water[J]. Applied Thermal Engineering, 2016, 109:630-639.
[15] KANG J Y, LEE G C, KAVIANY M, et al. Minimum film-boiling quench temperature increase by CuO porous-microstructure coating[J]. Applied Physics Letters, 2017, 110(4):043903.
[16] FATEHI M, KAVIANY M. Analysis of levitation of saturated liquid droplets on permeable surfaces[J]. International Journal of Heat and Mass Transfer, 1990, 33(5):983-994.

[1] 杨继虎, 孙志坚, 袁瑞峰, 黄浩, 陈天宇, 胡亚才. 电厂氟塑钢空预器的传热与积灰性能研究[J]. 浙江大学学报(工学版), 2018, 52(3): 577-583.
[2] 代超, 纪献兵, 周冬冬, 王野, 徐进良. 液滴碰撞不同湿润性表面的行为特征[J]. 浙江大学学报(工学版), 2018, 52(1): 36-42.
[3] 钟勋, 俞小莉, 吴俊, 蒋平灶. 氧化铝纳米流体在车用热交换器中的试验研究[J]. J4, 2010, 44(4): 761-764.
[4] 李冠球, 李蔚, 张政江, 张巍, 徐志明. 基于冯-卡门类比建立螺纹管内颗粒污垢模型[J]. J4, 2010, 44(3): 494-498.