Please wait a minute...
浙江大学学报(工学版)
土木工程、交通工程     
底泥固结对污染物运移影响的超重力离心试验模拟
郑健1,2,李育超1,2,陈云敏1,2
1. 浙江大学 软弱土与环境土工教育部重点实验室,浙江 杭州 310058;2. 浙江大学 岩土工程研究所,浙江 杭州 310058
Centrifuge test modeling of impact of sediment consolidation on contaminant transportation
ZHENG Jian1,2,LI Yu chao1,2,CHEN Yun min1,2
1. MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China; 2. Institute of Geotechnical Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(997 KB)   HTML
摘要:

为了研究污染底泥覆盖技术中添加覆盖层造成底泥固结排水、以对流方式加速污染物击穿覆盖层的过程,利用超重力离心模型试验的缩尺缩时效应,研究添加覆盖层后底泥固结对污染物运移速度及出流量的影响,采用数值方法对试验进行模拟.结果表明:1)添加覆盖层后上覆水体中氯离子质量浓度随时间的变化过程,与底泥固结沉降量随时间的变化过程具有较好的相关性.底泥固结排出的孔隙水以对流方式显著加快污染物向上覆水体运移,仅考虑污染物以扩散方式运移的底泥覆盖设计方法偏不安全.2)覆盖层对底泥污染物运移有一定的延滞作用,1 cm厚度覆盖层的上覆水层中氯离子质量浓度比3 cm厚度情况高85.7%,增加覆盖层厚度可以显著地减少底泥污染物运移到上覆水体的量.3)采用分层总和法计算得到的底泥沉降与实测值接近,平均相差为8.7%;试验底泥固结时间介于以2种排水路径(添加覆盖层固结前、后底泥高度)计算得到的时间之间,通过超重力离心模型试验模拟底泥固结过程是可行的.4)覆盖层引起的底泥沉降的数值计算值较实测值偏大(平均相差10.9%),上覆水体污染物质量浓度的数值计算值较实测值偏小(平均相差16.6%).5)数值分析表明,与纯扩散相比,底泥固结造成污染物击穿覆盖层时间缩短40.7倍.

Abstract:

The impact of sediment consolidation induced by capping on velocity of contaminant migration and outflow amount was analyzed in order to study the process of consolidation of sediment and the pore water release accelerate contaminant transport through the cover via advection in sediment capping technology. The special and temporal scaling effects of centrifuge tests were used, and the tests were simulated using numerical method. 1) The relationship between chloride mass concentration in the overlying water and time had a good correlation with that between sediment settlement induced by consolidation and time. The pore water squeezed by sediment consolidation remarkably accelerated the contaminant migration towards the overlying water.The design of contaminated sediment capping is unconservative if only contaminant diffusion is considered. 2) Tests for caps with varied thicknesses showed that the capping layer retained the migration of contaminant. The chloride concentration in the overlying water of 1 cm capping layer was 857% higher than 3 cm capping layer, and a thicker capping layer can significantly reduce the amount of contaminant moving into the overlying water. 3) The sediment settlements calculated by the layer wise summation method simulations are close to the experimental measurements with an average difference of 87%. The sediment consolidation time of centrifuge test was between the time calculated by two different drainage paths (the sediment height before and after consolidation was completed for capping). Sediment consolidation induced by capping can be simulated by centrifuge tests. 4) The numerical results of the sediment settlement under different thickness capping layer were higher than experimental measurements with an average difference of 109%, while those of the chloride mass concentration in the overlying water were lower than experimental measurement with an average difference of 166%. 5) The numerical results show that the breakthrough time can be shortened by 407 times if sediment consolidation is considered compared to diffusion.

出版日期: 2016-03-31
:  TU 411  
基金资助:

 国家自然科学基金青年科学基金资助项目(51009121).

通讯作者: 李育超,男,副教授. ORCID: 0000 0002 3636 5007.     E-mail: liyuchao@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

郑健,李育超,陈云敏. 底泥固结对污染物运移影响的超重力离心试验模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.01.002.

ZHENG Jian,LI Yu chao,CHEN Yun min. Centrifuge test modeling of impact of sediment consolidation on contaminant transportation. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.01.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.01.002        http://www.zjujournals.com/eng/CN/Y2016/V50/I1/8

[1] 敖静. 污染底泥释放控制技术的研究进展[J]. 环境保护科学, 2005, 30(6): 29-32.
AO Jing. Reviews on development of release control techniques of contaminated sediment [J]. Environmental Protection Science, 2005, 30(6): 29-32.
[2] 朱广伟, 陈英旭. 水体沉积物的污染控制技术研究进展[J]. 农业环境保护, 2002, 21(4): 378-380.
ZHU Guang wei, CHEN Ying xu. Reviews on development of pollution control techniques of sediment [J]. Agro Environmental Protection, 2002, 21(4): 378-380.
[3] 胡小贞,金相灿,卢少勇,等. 湖泊底泥污染控制技术及其适用性探讨[J]. 中国工程科学, 2009, 11(9): 28-33.
HU Xiao zhen, JIN Xiang can, LU Shao yong, et al. Techniques for sediment pollution control and discussion on the applicability in lakes of China [J]. Engineering Sciences, 2009, 11(9): 28-33.
[4] AZCUE J M, ZEMAN A J, MUDROCH A, et al. Assessment of sediment and porewater after one year of subaqueous capping of contaminated sediments in Hamilton Harbour, Canada [J]. Water Science and Technology, 1998, 37(6): 323-329.
[5] PALERMOM R. Design considerations for in situ capping of contaminated sediments [J]. Water Science and Technology, 1998, 37(6): 315-321.
[6] U.S.EPA. Contaminated sediment remediation guidance for hazardous waste sites [R]. \[S.l.\]:EPA, 2005.
[7] 唐艳, 胡小贞, 卢少勇. 污染底泥原位覆盖技术综述[J]. 生态学杂志, 2007, 26(7): 1125-1128.
TANG Yan, HU Xiao zhen, LU Shao yong. In situ capping technology for remediation of contaminated sediment [J]. Chinese Journal of Ecology, 2007, 26(7): 1125-1128.
[8] PALERMO M R, MAYNORD S, MILLER J, et al. Guidance for in situ subaqueous capping of contaminated sediments [R]. Chicago: Great Lakes National Program Office, 1998.
[9] GIDLEY P T, KWON S, YAKIREVICH A, et al. Advection dominated transport of polycyclic aromatic hydrocarbons in amended sediment caps [J]. Environmental Science and Technology, 2012, 46(9): 5032-5039.
[10] THOMA G J, REIBLE D D, VALSARAJ K T, et al. Efficiency of capping contaminated sediments in situ. 2. mathematics of diffusion adsorption in the capping layer [J]. Environmental Science and Technology, 1993, 27(12): 2412-2419.
[11] ZEMAN A J. Subaqueous capping of very soft contaminated sediments [J]. Canadian Geotechnical Journal, 1994, 31(4): 570-577.
[12] FOX P J. Coupled large strain consolidation and solute transport. I: model development [J]. Journal of Geotechnical and Geoenvironment Engineering, 2007, 133(1): 3-15.
[13] FOX P J. Coupled large strain consolidation and solute transport. II: model verification and simulation results[J]. Journal of Geotechnical and Geoenvironment Engineering, 2007, 133(1): 16-29.
[14] FOX P J, LEE J. Model for consolidation induced solute transport with nonlinear and nonequilibrium sorption [J]. International Journal of Geomechanics, 2008, 8(3): 188-198.
[15]LEE J, FOX P J. Investigation of consolidation induced solute transport. II: experimental and numerical results [J]. Journal of Geotechnical and Geoenvironmental Engineering, 2009, 135(9): 1239-1253.
[16] LEE J, PARK J W. Numerical investigation for the isolation effect of in situ capping for heavy metals in contaminated sediments [J]. KSCE Journal of Civil Engineering, 2013, 17(6): 1275-1283.
[17] LYNDON A, SCHOFIELD A N. Centrifugal model tests of the Lodalen landslide [J]. Canadian Geotechnical Journal, 1978, 15(1): 113.
[18] Geotechnical centrifuge technology [M]. London: CRC, 2003:22-25.
[19] ARULANANDAN K, THOMPSON P Y, KUTTER B L, et al. Centrifuge modeling of transport processes for pollutants in soils [J]. Journal of Geotechnical Engineering, 1988, 114(2): 185-205.
[20] KUMAR P R. Scaling laws and experimental modeling of contaminant transport mechanism through soils in a geotechnical centrifuge [J]. Geotechnical and Geological Engineering, 2007, 25(5): 581-590.
[21] NAKAJIMA H, HIROOKA A, TAKEMURA J, et al. Centrifuge modeling of one dimensional subsurface contamination [J]. Journal of the American Water Resource Association, 1998, 34(6): 1415-1425.
[22] MOO YOUNG H, MYERS T, TARDY B, et al. Determination of the environmental impact of consolidation induced convective transport through capped sediment [J]. Journal of Hazardous Materials, 2001, 85(1): 53-72.
[23] MOO YOUNG H, MYERS T, TARDY B, et al. Modeling contaminant transport through capped dredged sediment using a centrifuge [J]. Journal of Soils and Sediments, 2002, 2(3): 117-128.
[24] TANG G P, ALSHAWABKEH A N, SHEAHAN T C. Experimental study of nonreactive solute transport in fine grained soils under consolidation [J]. Waste Containment and Remediation, 2005, 168: 36-46.
[25] LEE J, FOX P J. An experimental investigation of consolidation induced solute transport [C]∥Proceedings of GeoCongress. New Orleans: [s.n.], 2008: 806813.
[26] 中华人名共和国建设部. GB/T50123 1999,土工试验方法标准[S]. 北京: 中国计划出版社,1999.
[27] MCKINLEY J D, PRICE B A, LYNCH R J, et al. Centrifuge modeling of the transport of a pulse of two contaminants through a clay layer [J]. Geotechnique, 1998, 48(3): 421-425.
[28]SHARMA H D, REDDY K R. Ceoenvironmental engineering: stie remediation, waste containment, and e merging waste management technologies [M]. New Jersey: Wiley, 2004.
[29] 谢海建. 成层介质污染物运移机理及衬垫系统防污性能研究[D]. 杭州:浙江大学,2008.
XIE Hai jian. A study on contaminant transport in layered media and the performance of landfill liner sytems [D]. Hangzhou: Zhejiang University, 2008.

[1] 焦卫国, 詹良通, 兰吉武,陈云敏. 黄土-碎石覆盖层毛细阻滞效应及设计厚度分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2128-2134.
[2] 陈经浩, 黄建新, 陆胜勇, 李晓东, 严建华. 生活垃圾开放式燃烧炭黑的结构及污染物分析[J]. 浙江大学学报(工学版), 2016, 50(10): 1849-1854.
[3] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[4] 张如如,赵云,徐文杰,黄博,凌道盛,韩黎明. 温度作用下机场跑道土基中水气运移规律分析[J]. 浙江大学学报(工学版), 2016, 50(5): 822-830.
[5] 曾兴, 詹良通, 钟孝乐, 陈云敏. 低渗透黏土中氯离子弥散作用离心模拟相似性[J]. 浙江大学学报(工学版), 2016, 50(2): 241-249.
[6] 凌道盛,石吉森,张如如,王云岗. Hansbo类有限单元法的非连续分片试验[J]. 浙江大学学报(工学版), 2015, 49(11): 2142-2150.
[7] 徐日庆,徐丽阳,邓祎文,朱亦弘. 基于SEM和IPP测定软黏土接触面积的试验[J]. 浙江大学学报(工学版), 2015, 49(8): 1417-1425.
[8] 李静媛, 赵永志, 郑津洋. 加氢站高压氢气泄漏爆炸事故模拟及分析[J]. 浙江大学学报(工学版), 2015, 49(7): 1389-1394.
[9] 钟孝乐,詹良通,龚标,曾兴,陈云敏. 我国3种典型高岭土的固结、渗透及吸附特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1947-1954.
[10] 李新亮,李素贞,申永刚. 交通荷载作用下埋地管道应力分析与现场测试[J]. 浙江大学学报(工学版), 2014, 48(11): 1976-1982.
[11] 徐日庆,畅帅,俞元洪,陆建阳. 基于响应面法的杭州海相软土固化强度模型[J]. 浙江大学学报(工学版), 2014, 48(11): 1941-1946.
[12] 涂志斌, 黄铭枫, 楼文娟. 基于Copula函数的建筑动力风荷载相关性组合[J]. 浙江大学学报(工学版), 2014, 48(8): 1370-1375.
[13] 李蓓, 田野, 赵若轶, 段安, 李宗津, 马红岩. 聚丙烯酸酯乳液改性砂浆微观结构与改性机理[J]. 浙江大学学报(工学版), 2014, 48(8): 1345-1352.
[14] 李雪刚,徐日庆,畅帅,廖斌,王兴陈. 响应面法优化有机质软土复合固化剂配方[J]. 浙江大学学报(工学版), 2014, 48(5): 843-849.
[15] 刘长殿, 孙红月, 康剑伟, 杜丽丽. 土体的充气阻渗试验[J]. J4, 2014, 48(2): 236-241.