Please wait a minute...
浙江大学学报(工学版)
能源与机械工程     
硬岩隧道掘进机推进系统姿态自适应控制
 张振1, 龚国芳1, 吴伟强1, 刘统1, 饶云意1, 周建军2
1. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027;2. 中铁隧道集团 盾构及掘进技术国家重点实验室, 河南 郑州 450003
Adaptive attitude control of thrust system for hard rock tunnel boring machine
ZHANG Zhen1, GONG Guo fang1, WU Wei qiang1, LIU Tong1, RAO Yun yi1, ZHOU Jian jun2
1. State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China;2. State Key Laboratory of Shield Machine and Boring Technology, China Railway Tunnel Group Limited Company, Zhengzhou 450003, China
 全文: PDF(2582 KB)   HTML
摘要:
针对全断面硬岩隧道掘进机(TBM)油缸并联推进系统产生的推进干扰力降低关键部件使用寿命和隧道开挖精度的问题,提出姿态自适应推进系统. 建立推进机构的数学模型,将推进油缸分为2组,对2组推进油缸的大腔压力进行动态分配. 使用ADAMS AMESim Simulink三软件联合仿真,对比分析并联推进系统与姿态自适应推进系统.结果表明:在额定推进力和0.1°、0.3°、0.5°调向角度下,姿态自适应推进系统产生的推进干扰力为并联推进系统的2%,姿态自适应推进系统平行于主梁的推进正压力的超调小于5%.姿态自适应推进系统可以显著减小推进干扰力,具有良好的稳定性.
Abstract:
A new adaptive attitude (ADA) tunnel boring machine (TBM) thrust system was proposed to overcome the problem of the service life of critical components and tunnel excavation precision reduced by disturbing force produced by four cylinders connected in parallel (CCP) thrust system. The mathematical model of thrust mechanism was established. Four cylinders were divided into two groups and working pressure of each group was adjusted in real time. The comparison of ADA thrust system and CCP thrust system was conducted by using co simulation of ADAMS AMESim and Simulink when the deflection angle was 0.1°, 0.3° and 0.5°
under rated thrust force. Results showed that the disturbing force in ADA thrust system was 2% comparing to disturbing force in CCP thrust system. The overshoot of force paralleled to main beam in ADA thrust system was less than 5%. ADA thrust system can significantly improve performance in reducing the disturbing force, and the system has a good stability.
出版日期: 2015-10-29
:  TH 137  
基金资助:

国家“863”高技术研究发展计划资助项目(2012AA041803);国家“973”重点基础研究发展规划资助项目(2013CB035400).

通讯作者: 龚国芳,男,教授.     E-mail: gfgong@zju.edu.cn
作者简介: 张振 (1990—),男,硕士生,从事大型掘进装备电液控制技术的研究. E-mail: qlzhangzhen@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

张振, 龚国芳, 吴伟强, 刘统, 饶云意, 周建军. 硬岩隧道掘进机推进系统姿态自适应控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008 973X.2015.10.007.

ZHANG Zhen, GONG Guo fang, WU Wei qiang, LIU Tong, RAO Yun yi, ZHOU Jian jun. Adaptive attitude control of thrust system for hard rock tunnel boring machine. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008 973X.2015.10.007.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008 973X.2015.10.007        http://www.zjujournals.com/eng/CN/Y2015/V49/I10/1870

[1] 杜彦良,杜世杰.全断面岩石隧道掘进机 系统原理与集成设计[M].武汉:华中科技大学出版社,2011: 1-16.
[2] 吴波,阳军生.岩石隧道全断面掘进机施工技术[M].合肥:安徽科学技术出版社,2008: 1-3.
[3] 周赛群.全断面硬岩掘进机TBM)驱动系统的研究[D].杭州:浙江大学,2008.
ZHOU Sai qun. Study on drive system of the full face rock tunnel boring machine [D]. Hangzhou: Zhejiang University, 2008.
[4] 张镜剑,傅冰骏.隧道掘进机在我国应用的进展[J].岩石力学与工程学报,2007,26(2): 226-238.
ZHANG Jing jian, FU Bing jun. Advances in tunnel boring machine application in China [J]. Chinese Journal of Rock Mechanics and
Engineering, 2007, 26(2):226-238.
[5] YAGIZ S, GOKCEOGLU C, SEZER E. Application of two non linear prediction tools to the estimation of tunnel boring machine performance [J]. Engineering Applications of Articial Intelligence, 2009, 22 (4/5): 808-814.
[6] GHOLAMNEJAD J, TAYARANI N. Application of artificial neural networks to the prediction of tunnel boring machine penetration rate [J]. Mining Science and Technology, 2010, 20(5): 727-733.
[7] 龚秋明,佘祺锐,侯哲生,等.高地应力作用下大理岩岩体的TBM掘进试验研究[J].岩石力学与工程学报,2010,29(12): 2522-2532.
GONG Qiu ming, SHE Qi rui, HOU Zhe sheng, et al. Experimental study of TBM penetration in marble rock mass under high geostress [J]. Chinese Journal of Rock Mechanics and Engineering, 2010, 29(12): 2522-2532.
[8]  YAZDANI CHAMZINI A, YAKHCHALI S H. Tunnel boring machine (TBM) selection using fuzzy multicriteria decision making methods [J]. Tunnelling and Underground Space Technology, 2012, 30: 194-204.
[9] 黄先祥,马长林,高钦和,等.大型装置起竖系统协同仿真研究[J].系统仿真学报,2007,19(1): 1-2.
HUANG Xian xiang, MA Chang lin, GAO Qin he, et al. Studies for collaborative simulation of large erection mechanism system [J]. Journal of System Simulation, 2007,19(1): 1-2.
[10] 李剑峰,汪建兵,林建军,等.机电系统联合仿真与集成优化案例解析[M].北京:电子工业出版社,2010: 1-10.
[11] 熊光楞,郭斌,陈晓波,等.协同仿真与虚拟样机技术[M].北京:清华大学出版社,2004:15.
[12] 韩寿松,晁智强,刘相波. 基于ADAMS 和AMESim 的液压六自由度平台联合仿真研究[J].机床与液压,2013,41(9): 157-159.
HAN Shou song, CHAO Zhi qiang, LIU Xiang bo. Co simulation study on stewart platform based on ADAMS and AMESim [J]. Machine Tool and Hydraulics, 2013, 41(9): 157-159.
[13] 王伟,傅新,谢海波,等.基于AMESim的液压并联机构建模及耦合特性仿真[J]. 浙江大学学报:工学版,2007,41(11): 1876-1880.
WANG Wei, FU Xin, XIE Hai bo, et al. Modeling of AMESim based hydraulic parallel mechanism and simulation of its coupling characteristics [J]. Journal of Zhejiang University: Engineering Science, 2007, 41(11): 1876-1880.
[14] 魏建华,杜恒,方向,等.基于ADAMS/Simulink/AMESim的油气悬架道路友好性分析[J].农业机械学报,2010,41(10): 11-17.
WEI Jian hua, DU Heng, FANG Xiang,et al. Road friendliness of interconnected hydro pneumatic suspension based on ADAMS/ Simulink/ AMESim [J]. Transactions of the Chinese Society for Agricultural Machinery, 2010, 41(10): 11-17.
[15] 侯典清.盾构推进系统顺应性及掘进姿态控制研究[D].杭州:浙江大学,2013.
HOU Dian qing. Research on compliance characteristics and attitude control of shield propulation system [D]. Hangzhou: Zhejiang University, 2013.
[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[8] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[12] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.