电气工程 |
|
|
|
|
计及分时汽价的耦合绿电蒸汽供热系统配置优化 |
薄其明1,2( ),袁盟1,汪育超3,林小杰1,*( ),施平原1,戴哲1,钟崴1,祝令凯4 |
1. 浙江大学 能源工程学院,浙江 杭州 310027 2. 中国华电集团有限公司宁夏公司,宁夏 银川 750002 3. 合肥热电集团有限公司,安徽 合肥 230061 4. 国网山东省电力公司电力科学研究院,山东 济南 250003 |
|
Configuration optimization for coupled green electricity steam heating systems considering time-of-use steam pricing |
Qiming BO1,2( ),Meng YUAN1,Yuchao WANG3,Xiaojie LIN1,*( ),Pingyuan SHI1,Zhe DAI1,Wei ZHONG1,Lingkai ZHU4 |
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China 2. China Huadian Corporation Ningxia Branch, Yinchuan 750002, China 3. Hefei Thermal Power Group Co. Ltd, Hefei 230061, China 4. State Grid Shandong Electric Power Research Institute, Jinan 250003, China |
引用本文:
薄其明,袁盟,汪育超,林小杰,施平原,戴哲,钟崴,祝令凯. 计及分时汽价的耦合绿电蒸汽供热系统配置优化[J]. 浙江大学学报(工学版), 2025, 59(9): 1911-1919.
Qiming BO,Meng YUAN,Yuchao WANG,Xiaojie LIN,Pingyuan SHI,Zhe DAI,Wei ZHONG,Lingkai ZHU. Configuration optimization for coupled green electricity steam heating systems considering time-of-use steam pricing. Journal of ZheJiang University (Engineering Science), 2025, 59(9): 1911-1919.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.09.015
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I9/1911
|
1 |
International Energy Agency. Renewables 2020: Analysis [EB/OL]. (2020-11-10)[2024-05-15]. https://www.iea.org/reports/renewables-2020.
|
2 |
国家统计局. 中国统计年鉴: 2023 [EB/OL]. [2024-05-14]. https://www.stats.gov.cn/sj/ndsj/2023/indexch.htm
|
3 |
王旭光. 大型工业供热蒸汽管网运行状态分析及操作优化 [D]. 杭州: 浙江大学, 2015.
|
4 |
GUELPA E, VERDA V Thermal energy storage in district heating and cooling systems: a review[J]. Applied Energy, 2019, 252: 113474
doi: 10.1016/j.apenergy.2019.113474
|
5 |
GUELPA E, VERDA V Demand response and other demand side management techniques for district heating: a review[J]. Energy, 2021, 219: 119440
doi: 10.1016/j.energy.2020.119440
|
6 |
GUELPA E, MARINCIONI L, DEPUTATO S, et al Demand side management in district heating networks: a real application[J]. Energy, 2019, 182: 433- 442
doi: 10.1016/j.energy.2019.05.131
|
7 |
YANG Y, GUO S, LIU D, et al Operation optimization strategy for wind-concentrated solar power hybrid power generation system[J]. Energy Conversion and Management, 2018, 160: 243- 250
doi: 10.1016/j.enconman.2018.01.040
|
8 |
XU Y, SONG Y, DENG Y, et al Low-carbon economic dispatch of integrated energy system considering the uncertainty of energy efficiency[J]. Energy Reports, 2023, 9: 1003- 1010
|
9 |
王谦, 王斌, 刘翔 零碳交易下工业园区综合能源系统优化配置[J]. 浙江大学学报: 工学版, 2023, 57 (11): 2294- 2304 WANG Qian, WANG Bin, LIU Xiang Optimal allocation of integrated energy systems in industrial parks under zero carbon trading[J]. Journal of Zhejiang University: Engineering Science, 2023, 57 (11): 2294- 2304
|
10 |
陈艳波, 方哲, 张宁, 等 基于大语言模型绿电预测和绿电交易的园区综合能源系统集群多目标协同运行方法[J]. 高电压技术, 2024, 50 (7): 2849- 2863 CHEN Yanbo, FANG Zhe, ZHANG Ning, et al Multi-objective collaborative operation method for park-level integrated energy system cluster based on large language model for green electricity prediction and trading[J]. High Voltage Engineering, 2024, 50 (7): 2849- 2863
|
11 |
SCHLEDORN A, CHAROUSSET-BRIGNOL S, JUNKER R G, et al Frigg 2.0: integrating price-based demand response into large-scale energy system analysis[J]. Applied Energy, 2024, 364: 122960
doi: 10.1016/j.apenergy.2024.122960
|
12 |
邢海军, 叶宇静, 刘哲远, 等 含多种灵活性资源的综合能源系统低碳优化调度[J]. 浙江大学学报: 工学版, 2024, 58 (6): 1243- 1254 XING Haijun, YE Yujing, LIU Zheyuan, et al Low-carbon optimal scheduling of integrated energy system considering multiple flexible resources[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (6): 1243- 1254
|
13 |
ZHANG M, YAN Q, GUAN Y, et al Joint planning of residential electric vehicle charging station integrated with photovoltaic and energy storage considering demand response and uncertainties[J]. Energy, 2024, 298: 131370
doi: 10.1016/j.energy.2024.131370
|
14 |
范帅, 郏琨琪, 郭炳庆, 等 分散式电采暖负荷协同优化运行策略[J]. 电力系统自动化, 2017, 41 (19): 20- 29 FAN Shuai, JIA Kunqi, GUO Bingqing, et al Collaborative optimal operation strategy for decentralized electric heating loads[J]. Automation of Electric Power Systems, 2017, 41 (19): 20- 29
|
15 |
ZHANG W, LIAN J, CHANG C Y, et al Aggregated modeling and control of air conditioning loads for demand response[J]. IEEE Transactions on Power Systems, 2013, 28 (4): 4655- 4664
doi: 10.1109/TPWRS.2013.2266121
|
16 |
PU L, WANG X, TAN Z, et al Feasible electricity price calculation and environmental benefits analysis of the regional nighttime wind power utilization in electric heating in Beijing[J]. Journal of Cleaner Production, 2019, 212: 1434- 1445
doi: 10.1016/j.jclepro.2018.12.105
|
17 |
HEMMATI M, MIRZAEI M A, ABAPOUR M, et al Economic-environmental analysis of combined heat and power-based reconfigurable microgrid integrated with multiple energy storage and demand response program[J]. Sustainable Cities and Society, 2021, 69: 102790
doi: 10.1016/j.scs.2021.102790
|
18 |
XIE T, MA K, ZHANG G, et al Optimal scheduling of multi-regional energy system considering demand response union and shared energy storage[J]. Energy Strategy Reviews, 2024, 53: 101413
doi: 10.1016/j.esr.2024.101413
|
19 |
ZHONG W, DAI Z, LIN X, et al Study on time-of-use pricing method for steam heating system considering user response characteristics and thermal storage capacity[J]. Energy, 2024, 296: 131056
doi: 10.1016/j.energy.2024.131056
|
20 |
张通, 刘理峰, 杨才明, 等 考虑需求响应和风电不确定性的能源系统调度[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1562- 1571 ZHANG Tong, LIU Lifeng, YANG Caiming, et al Energy system scheduling considering demand response and wind power uncertainty[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1562- 1571
|
21 |
PAN C, JIN T, LI N, et al Multi-objective and two-stage optimization study of integrated energy systems considering P2G and integrated demand responses[J]. Energy, 2023, 270: 126846
doi: 10.1016/j.energy.2023.126846
|
22 |
杨恒岳, 刘青荣, 阮应君 基于k-means聚类算法的分布式能源系统典型日冷热负荷选取[J]. 热力发电, 2021, 50 (3): 84- 90 YANG Hengyue, LIU Qingrong, RUAN Yingjun Selection of typical daily cooling and heating load of CCHP system based on k-means clustering algorithm[J]. Thermal Power Generation, 2021, 50 (3): 84- 90
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|