Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (6): 1322-1332    DOI: 10.3785/j.issn.1008-973X.2025.06.023
电气工程     
LLC谐振型三端口DC-DC变换器及其解耦控制
王子钰(),石健将*()
浙江大学 电气工程学院,浙江 杭州 310027
LLC resonant three port DC-DC converter and its decoupling control
Ziyu WANG(),Jianjiang SHI*()
College of Electrical Engineering , Zhejiang University, Hangzhou 310027, China
 全文: PDF(7603 KB)   HTML
摘要:

针对太阳能无人机高效发电系统的应用需求,提出集成光/储一体化设计的LLC谐振型三端口DC-DC变换器拓扑及其先进控制策略. 采用时域分析的方法,对该三端口变换器在不同功率传输模式下谐振腔具有的多种工作模式进行分析,并采用移相控制实现对3个端口之间功率的灵活控制. 为了得到准确的变换器增益特性的数学表达式,采用多项式近似的方法,拟合时域分析得到的增益曲面,并在此基础上提出解耦控制策略. 解耦环路的设计能够有效降低三端口变换器多控制环路之间的功率耦合程度,优化动态性能. 搭建500 W的试验样机,对该三端口电路拓扑的稳态运行特征、模式动态切换过程以及解耦环路的设计进行验证. 实验结果表明,该时域分析方法能够准确描述电路特征,同时解耦环路能够有效降低控制环路之间的功率耦合程度,提升系统的动态响应性能.

关键词: 三端口DC-DC变换器LLC谐振腔移相控制解耦控制多项式拟合    
Abstract:

A LLC resonant three port DC-DC converter with integrated photovoltaic and storage design and its advanced control strategy were proposed, for the application requirements of solar powered UAV’s energy manager. Firstly, time-domain analysis was used to analyze the multiple operating modes of the resonant tank of the three-port converter under different power transmission modes. Phase shift control was used to achieve the flexible power control among the three ports. Secondly, polynomial approximation was used to fit the gain surface obtained from time-domain analysis to obtain an accurate mathematical expression for the gain characteristics of the converter. On this basis, a decoupling control strategy was proposed. The design of the decoupling loop could effectively reduce the power coupling degree between multiple control loops of the three-port converter and optimize its dynamic performance. Finally, a 500 W experimental prototype was built, to verify the steady-state operating characteristics, dynamic mode switching process, and decoupling loop design of the three-port topology. The experimental results verified that the time-domain analysis method could accurately describe the circuit characteristics, and the decoupling loop could effectively reduce the degree of power coupling between control loops and improve the dynamic response performance of the system.

Key words: three port DC-DC converter    LLC resonant tank    phase shift control    decoupling control method    polynomial fitting
收稿日期: 2024-10-29 出版日期: 2025-05-30
CLC:  TM 46  
基金资助: 国家自然科学基金资助项目(52077199).
通讯作者: 石健将     E-mail: 22210149@zju.edu.cn;jianjiang@zju.edu.cn
作者简介: 王子钰(2000—),男,硕士生,从事三端口直流变换器研究. orcid.org/0009-0009-5848-4195. E-mail:22210149@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王子钰
石健将

引用本文:

王子钰,石健将. LLC谐振型三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报(工学版), 2025, 59(6): 1322-1332.

Ziyu WANG,Jianjiang SHI. LLC resonant three port DC-DC converter and its decoupling control. Journal of ZheJiang University (Engineering Science), 2025, 59(6): 1322-1332.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.06.023        https://www.zjujournals.com/eng/CN/Y2025/V59/I6/1322

图 1  TPC拓扑结构
图 2  不同功率传输模式下主要工作波形
图 3  谐振腔工作状态图
图 4  三端口运行模式下各个模态下的等效电路图
图 5  不同运行模式下的增益曲面
图 6  电路控制框图
ⅡA模态ⅡB模态ⅢA模态ⅢB模态
a11=?3.433a12=?6.119a21=?3.106a22=?2.968
b11=0.3244b12=?4.448b21=?0.2447b22=0.4512
c11=0.2987c12=2.72c21=?0.003821c22=?0.4108
d11=?0.4699d12=2.857d21=?1.423d22=?0.1565
e11=0.8428e12=?0.2604e21=1.156e22=1.096
f11=0.7062f12=0.1681f21=0.7762
g12=0.7468
表 1  拟合曲面多项式系数
ⅡA模态ⅡB模态ⅢA模态ⅢB模态
A11=a11A12=a12A21=a21A22=a22
B11=0.5b11/a11B12=b12B21=0.5b21/a21B22=0.5b22/a22
C11=0.5c11/a11C12=c12C21=0.5c21/a21C22=0.5c22/a22
D11=d11?0.25b112/a11D12=d12D21=d21?0.25b212/a21D22=?0.25b222/a22
E11=e11?0.5b11c11/a11E12=e12E21=e21?0.5b21c21/a21E22=d22?0.5b22c22/a22
F11=f11?0.25c112/a11F12=f12F21=f21?0.25c212/a21F22=e22?0.25c222/a22
G12=g12
表 2  解耦多项式系数
$R_{\mathrm{o}}/ \Omega $MPf/%
800.856999.98
1000.864099.18
1500.875697.86
2000.882797.08
4000.895595.69
表 3  不同负载下的增益特性对比
图 7  模式Ⅱ下的拟合增益曲面图
模态Ⅱ模态Ⅲ
a1=2.101a2=7.128
b1=?2.585b2=?6.238
c1=0.7826c2=1.223
d1=?0.00304d2=0.1113
表 4  运行边界多项式系数
图 8  加入解耦控制的系统控制框图
图 9  解耦仿真实验
图 10  三端口实物样机图
参数数值参数数值
光伏电压VPV/V80~120谐振电容Cr/nF470
蓄电池电压Vb/V50~75励磁电感Lm/μH40
输出电压Vo/V200变压器变比n1n21∶3
输出功率Po/W0~500谐振频率fr/kHz100
谐振电感Lr/μH5.39开关频率fs/kHz100
表 5  样机主要参数
图 11  不同工作模式下的运行波形
图 12  功率传输模式切换波形
图 13  满载500 W下的动态响应波形
图 14  400 W条件下的动态响应波形
图 15  200 W条件下的动态响应波形
1 高明. 太阳能无人机能量管理器若干关键技术研究[D]. 杭州: 浙江大学, 2024.
GAO Ming. Research on several key technologies of solar powered UAV’s energy manager [D]. Hangzhou: Zhejiang University, 2024.
2 高圣伟, 祝庆同 一种独立光储发电系统用宽输入范围非隔离三端口变换器[J]. 电工技术学报, 2023, 38 (4): 970- 982
GAO Shengwei, ZHU Qingtong A wide input range non-isolated three-port converter for stand-alone PV storage power generation system[J]. Transactions of China Electrotechnical Society, 2023, 38 (4): 970- 982
3 CHIEN L J, CHEN C C, CHEN J F, et al Novel three-port converter with high-voltage gain[J]. IEEE Transactions on Power Electronics, 2014, 29 (9): 4693- 4703
doi: 10.1109/TPEL.2013.2285477
4 HU Y, XIAO W, CAO W, et al Three-port DC-DC converter for stand-alone photovoltaic systems[J]. IEEE Transactions on Power Electronics, 2015, 30 (6): 3068- 3076
doi: 10.1109/TPEL.2014.2331343
5 KIM S Y, SONG H S, NAM K Idling port isolation control of three-port bidirectional converter for EVs[J]. IEEE Transactions on Power Electronics, 2011, 27 (5): 2495- 2506
6 TOMAS-MANEZ K, ZHANG Z, OUYANG Z. Multi-port isolated LLC resonant converter for distributed energy generation with energy storage [C]// IEEE Energy Conversion Congress and Exposition. Cincinnati: IEEE, 2017: 2219–2226.
7 WANG Z, LI H An integrated three-port bidirectional DC-DC converter for PV application on a DC distribution system[J]. IEEE Transactions on Power Electronics, 2013, 28 (10): 4612- 4624
doi: 10.1109/TPEL.2012.2236580
8 QIAN Z, ABDEL-RAHMAN O, AL-ATRASH H, et al Modeling and control of three-port DC/DC converter interface for satellite applications[J]. IEEE Transactions on Power Electronics, 2009, 25 (3): 637- 649
9 WU H, XU P, HU H, et al Multiport converters based on integration of full-bridge and bidirectional DC-DC topologies for renewable generation systems[J]. IEEE Transactions on Industrial Electronics, 2014, 61 (2): 856- 869
doi: 10.1109/TIE.2013.2254096
10 孙孝峰, 刘飞龙, 熊亮亮, 等 双Buck/Boost集成双有源桥三端口DC-DC变换器[J]. 电工技术学报, 2016, 31 (22): 73- 82
SUN Xiaofeng, LIU Feilong, XIONG Liangliang, et al Dual buck/boost integrated dual active bridge three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (22): 73- 82
11 王杉杉, 高明, 石健将 一种应用于航天器分布式供电系统的ZVS三端口DC-DC变换器[J]. 太阳能学报, 2023, 44 (4): 384- 392
WANG Shanshan, GAO Ming, SHI Jianjiang A ZVS three-port dc-dc converter of distributed power supply system applied in spacecraft[J]. Acta Energiae Solaris Sinica, 2023, 44 (4): 384- 392
12 孙孝峰, 申彦峰, 李午英, 等 交错并联双向Buck/Boost集成LLC谐振型三端口直流变换器[J]. 电工技术学报, 2016, 31 (14): 165- 175
SUN Xiaofeng, SHEN Yanfeng, LI Wuying, et al Interleaved bidirectional buck/boost and LLC integrated three-port DC-DC converter[J]. Transactions of China Electrotechnical Society, 2016, 31 (14): 165- 175
13 王荣闯, 王杉杉, 高明, 等 光伏-蓄电池联合供电系统中三端口变换器的解耦控制研究[J]. 太阳能学报, 2022, 43 (3): 203- 209
WANG Rongchuang, WANG Shanshan, GAO Ming, et al Research on decoupling control of three-port converter in photovoltaic-battery generation system[J]. Acta Energiae Solaris Sinica, 2022, 43 (3): 203- 209
[1] 王杉杉,高明,石健将. 双Buck-Boost集成DAB型三端口直流变换器电流应力优化[J]. 浙江大学学报(工学版), 2022, 56(7): 1425-1435, 1472.
[2] 王荣闯,王杉杉,高明,石健将. 基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报(工学版), 2021, 55(8): 1585-1593.
[3] 赵一佳,王允建,王要东,张伟. 单移相输入串联输出并联的功率预测控制[J]. 浙江大学学报(工学版), 2020, 54(1): 160-168.
[4] 解五一,高霄,何思宇,肖晓晖. 面向复合材料自动铺放设备的输带速度与张力协同解耦控制[J]. 浙江大学学报(工学版), 2019, 53(3): 455-462.
[5] 赵皓宇, 祝长生. 电磁轴承刚性转子系统前馈解耦控制[J]. 浙江大学学报(工学版), 2018, 52(9): 1777-1787.
[6] 傅仕航, 侯庆会, 岳奥飞, 石健将. 基于“第二类”双重移相控制的双有源桥DC-DC变换器[J]. 浙江大学学报(工学版), 2018, 52(6): 1167-1176.
[7] 赵文健,杨昆,陈国柱. 模块化多电平变流器的直流电压控制方法[J]. 浙江大学学报(工学版), 2015, 49(9): 1749-1754.
[8] 李奇安, 金鑫. 对角CARIMA模型多变量广义预测近似解耦控制[J]. J4, 2013, 47(10): 1764-1769.
[9] 王道档, 杨甬英, 邵卫红, 陈晓钰. 球面干涉检测中改进的调整误差校正方法[J]. J4, 2012, 46(10): 1932-1936.