Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 1092-1102    DOI: 10.3785/j.issn.1008-973X.2025.05.022
土木工程、交通工程     
不封闭交通下大件车通行中小跨径桥梁安全评估
王俊峰1(),刘博2,院素静3,4,王涛3,4,*(),韩万水3,4
1. 西安建筑科技大学 土木工程学院,陕西 西安 710055
2. 江西省交通投资集团有限责任公司,江西 南昌 330108
3. 陕西省公路桥梁与隧道重点实验室,陕西 西安 710064
4. 长安大学 公路学院,陕西 西安 710064
Safety evaluation of special-purpose vehicle crossing small and medium span bridge under unclosed traffic condition
Junfeng WANG1(),Bo LIU2,Sujing YUAN3,4,Tao WANG3,4,*(),Wanshui HAN3,4
1. College of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2. Jiangxi Provincial Communications Investment Group Limited Company, Nanchang 330108, China
3. Shaanxi Provincial Key Laboratory of Highway Bridge and Tunnel, Xi’an 710064, China
4. Highway College, Chang’an University, Xi’an 710064, China
 全文: PDF(1431 KB)   HTML
摘要:

针对当前大件车通行验算时常忽略与社会车辆混合通行的情形,完善大件车通行公路桥梁评估体系,开展不封闭交通条件下大件车过桥响应分析及多层次安全评估. 针对某省超重大件车荷载数据(包括载重及尺寸信息)进行统计分析,提出大件车代表车型. 给出不封闭交通时大件车通行桥面荷载的组成形式,提出四层次安全评估方法. 以17座典型中小跨径桥梁(双向四车道)为例,对大件车混合通行桥梁荷载效应进行分析,提出不同层次下可混合通行大件车的轴数限值. 研究发现,大件车可以划分为平板式与凹梁式2种类型,根据轴距分布及加载模式,可以进一步划分为5种结构车型、3种计算车型. 随着安全评估层次的降低,大件车混行荷载效应逐渐降低,满足混合通行条件的大件车数量增多,安全保障措施要求逐渐提高. 大件车混合通行时桥面中心附近的主梁荷载效应最大,应予以重点关注. 仅有较少车货总重较低的大件车可以混合通行跨径小于10 m的RC空心板桥,桥梁技术状况等级为2类以上的PC梁桥可以满足绝大多数大件车混合通行的要求.

关键词: 桥梁工程大件车运输车辆不封闭交通多层次安全评估荷载效应通行建议    
Abstract:

An evaluation system for special-purpose vehicles (SPV) passage on highway bridges was improved in order to address the commonly overlooked scenario of parallel traffic flow between SPV and regular vehicles during bridge load assessments. The response analysis and multi-level safety evaluation of SPV crossing bridge under unclosed traffic conditions were conducted. Statistical analysis was conducted on the load data of SPV (including weight and dimension information) from a specific province, leading to the identification of representative vehicle types. The composition of bridge loads for SPVs during non-closure traffic was determined, and a four-level safety assessment methodology was developed. The effects of parallel traffic by SPVs on bridge loads were analyzed by using 17 typical medium and small span bridges (bi-directional and four lane) as examples, and axle number limits for parallel traffic at different levels were proposed. The research findings show that SPVs can be classified into flatbed and concave types, further divided into five structural types and three calculation models based on axle spacing distribution and loading patterns. The effects of parallel traffic by SPVs gradually decrease as the safety assessment level decreases, allowing for an increased number of vehicles to travel in parallel while requiring enhanced safety measures. The maximum load effect on the main beam near the center of the bridge deck should receive particular attention during parallel traffic by SPVs. Only a limited number of low-quality oversized vehicles can travel in parallel on RC hollow slab bridges with spans less than 10 m, while PC beam bridges with a condition rating of class II or above can meet the majority of requirements for parallel traffic by oversized vehicles.

Key words: bridge engineering    special-purpose vehicle    open traffic    multi-level safety assessment    load effect    traffic proposal
收稿日期: 2024-03-17 出版日期: 2025-04-25
CLC:  U 44  
基金资助: 陕西省交通运输厅科研资助项目(23-34K);陕西省自然科学基础研究计划一般项目-青年项目(2024JC-YBQN-0587);陕西省公路桥梁与隧道重点实验室(长安大学)开放基金资助项目(QLYSD2024K11).
通讯作者: 王涛     E-mail: JunfengWang@xauat.edu.cn;wtbridge@chd.edu.cn
作者简介: 王俊峰(1995—),男,讲师,博士,从事在役混凝土桥梁性能评估的研究. orcid.org/0000-0003-4146-8892.E-mail:JunfengWang@xauat.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
王俊峰
刘博
院素静
王涛
韩万水

引用本文:

王俊峰,刘博,院素静,王涛,韩万水. 不封闭交通下大件车通行中小跨径桥梁安全评估[J]. 浙江大学学报(工学版), 2025, 59(5): 1092-1102.

Junfeng WANG,Bo LIU,Sujing YUAN,Tao WANG,Wanshui HAN. Safety evaluation of special-purpose vehicle crossing small and medium span bridge under unclosed traffic condition. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1092-1102.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.022        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1092

图 1  车货总重分布
图 2  不同轴数大件车的年通行量
图 3  大件车车货总尺寸的分布
图 4  车辆横向、纵向车轮间距的分布
图 5  大件运输车辆轴距分布
类别图示轴距分布/m
平板Ⅰ型
平板Ⅱ型
平板Ⅲ型
凹梁Ⅰ型
凹梁Ⅱ型
表 1  大件车的代表车型
车型分类代表车型牵引车轴数挂车轴数挂车横向轮胎数d1/md2/md3/md4/md5/mVprop/%
RV-1平板Ⅰ型、凹梁Ⅰ型32×(3~8)牵引车: 2×4
拖挂车: 2×8
3.251.453.108.251.300.19
RV-2平板Ⅱ型33~193.251.453.101.251.78
RV-3平板Ⅲ型、凹梁Ⅱ型33~193.251.458.131.2598.0
表 2  大件车代表车型的计算模型
图 6  大件车桥面荷载的组成形式(双向四车道)
桥梁技术
状况等级
Z1
(抗弯构件)
ξeξcξsZ1'
1类1.150~0.061.000.98~1.001.13~1.15
2类1.100.02~0.080.980.95~0.981.00~1.04
3类1.000.05~0.120.930.90~0.950.80~0.88
表 3  桥梁承载能力的折减系数
桥梁类型代号跨径组成/m截面抗力/(kN·m)
跨中支点
钢筋混凝土简支空心板RCS-61×6312.0
RCS-81×8420.3
预应力混凝土简支空心板RCS-101×10615.6
PCS-101×101 118.4
PCS-131×131 632.8
PCS-161×162 229.0
PCS-201×203 333.5
预应力混凝土简支T梁PCT-201×205 734.0
PCT-251×258 912.6
PCT-301×309 924.3
PCT-351×3513 695.4
PCT-401×4023 897.6
预应力混凝土连续小箱梁PCB-204×206 345.47 073.5
PCB-254×258 463.48 527.3
PCB-304×3011 160.510 547.4
PCB-354×3514 550.313 326.9
PCB-404×4018 975.116 433.0
表 4  典型中小跨径桥梁的基本信息
图 7  典型中小跨径桥梁的横断面布置
图 8  大件车混行工况下的RCS-10荷载效应分布
图 9  大件车混行工况下的PCS-20荷载效应分布
图 10  大件车混行工况下的PCT-40荷载效应分布
图 11  大件车混行工况下的PCB-40荷载效应分布
图 12  桥梁响应极值
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-5-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-80-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-0-4-7-1ALL5-1-1-1-1-10-0-0-0-0-4
PCS-160-0-0-4-6-7ALL0-5-6-1-1-1NONE
PCS-200-0-0-4-5-77-1-1-1-1-10-4-5-6-1-1NONE
PCT-206-7-1-1-1-1ALLALL0-4-5-7-1-1
PCT-256-1-1-1-1-1ALLALL6-1-1-1-1-1
PCT-303-1-1-1-1-1ALL0-4-6-7-1-1NONE
PCT-353-7-1-1-1-1ALL0-6-7-7-7-1NONE
PCT-400-7-7-1-1-1ALLALL4-1-1-1-1-1
PCB-200-4-5-6-1-1ALLALLALL
PCB-250-4-5-5-6-1ALLALLALL
PCB-300-3-3-4-5-5ALLALLALL
PCB-350-0-0-3-4-5ALLALLALL
PCB-400-0-0-0-4-4ALLALLALL
表 5  RV-1车型允许混合通行的最大拖车轴数
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-5-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-10-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-0-4-7-1ALL5-1-1-1-1-10-0-0-0-0-3
PCS-160-0-0-3-6-71-1-1-1-1-10-4-5-1-1-1NONE
PCS-200-0-0-3-5-66-9-12-1-1-10-3-4-6-1-10NONE
PCT-205-7-9-14-1-1ALLALL0-4-5-7-1-9
PCT-255-1-9-9-9-10ALLALL5-7-9-9-9-10
PCT-304-7-1-9-9-109-11-12-12-13-130-5-6-7-7-1NONE
PCT-355-7-1-1-1-110-11-12-12-13-133-6-7-7-7-1NONE
PCT-405-7-1-1-1-9ALLALL6-1-1-9-9-10
PCB-200-3-4-4-6-7ALLALLALL
PCB-250-3-4-4-5-6ALLALL10-14-1-1-1-1
PCB-300-3-4-4-5-5ALLALL13-17-1-1-1-1
PCB-350-3-3-4-4-5ALLALL12-15-16-17-1-1
PCB-400-3-3-3-4-5ALLALL16-1-1-1-1-1
表 6  RV-2车型允许混合通行的最大拖车轴数
桥型第1阶段第2阶段
1类桥2类桥3类桥
RCS-60-0-0-4-1-10-3-1-1-1-10-0-0-1-1-1NONE
RCS-10-0-0-4-1-10-0-0-4-1-10-0-0-0-3-4NONE
RCS-100-0-0-4-6-10-0-0-4-6-10-0-0-0-0-3NONE
PCS-100-0-0-5-1-1ALLALL0-0-3-1-1-1
PCS-130-0-3-4-7-1ALL5-1-1-1-1-10-0-0-0-3-4
PCS-160-0-3-4-6-71-1-1-1-1-13-5-6-1-1-1NONE
PCS-200-0-3-4-5-77-10-12-1-1-10-4-5-6-1-10NONE
PCT-206-7-9-14-1-1ALLALL3-4-5-7-1-9
PCT-256-1-9-10-10-10ALLALL6-1-9-9-10-10
PCT-305-1-9-9-10-109-12-12-12-13-140-6-7-1-1-1NONE
PCT-355-1-1-1-9-911-12-13-13-13-144-7-1-1-1-1NONE
PCT-405-1-1-9-9-10ALLALL6-9-9-9-10-10
PCB-200-4-5-5-7-1ALLALLALL
PCB-250-4-5-5-6-7ALLALL11-15-1-1-1-1
PCB-300-3-4-4-5-6ALLALL14-18-1-1-1-1
PCB-350-3-4-4-5-6ALLALL13-16-17-18-1-1
PCB-400-3-4-4-5-5ALLALL17-1-1-1-1-1
表 7  RV-3车型允许混合通行的最大拖车轴数
1 贺宜, 余荣杰 大件货物道路运输技术现状与展望[J]. 前瞻科技, 2023, 2 (3): 106- 117
HE Yi, YU Rongjie Current state and prospect of road transportation technology for oversized freights[J]. Science and Technology Foresight, 2023, 2 (3): 106- 117
2 徐康, 王涛, 刘博, 等 大件车作用下独柱墩弯桥倾覆风险快速预测[J]. 防灾减灾工程学报, 2023, 43 (3): 474- 483
XU Kang, WANG Tao, LIU Bo, et al Fast prediction of overturning risk of single-pilar pier curved girder bridge under the action of customized transport vehicle[J]. Journal of Disaster Prevention and Mitigation Engineering, 2023, 43 (3): 474- 483
3 高文博, 袁阳光, 黄平明, 等 大件运输车载下考虑强度退化过程的钢绞线斜拉索安全评估[J]. 中国公路学报, 2020, 33 (8): 169- 181
GAO Wenbo, YUAN Yangguang, HUANG Pingming, et al Safety assessment of steel strand stay cable under customized transport vehicle load considering strength degradation[J]. China Journal of Highway and Transport., 2020, 33 (8): 169- 181
4 钟杰, 李本伟, 任德庆, 等 适用于普通公路大件设备运输的桥梁通过性评估体系研究[J]. 公路, 2021, 66 (8): 124- 130
ZHONG Jie, LI Benwei, REN Deqing, et al Study of bridge capacity assessment system for large-scale equipment transportation on highway[J]. Highway, 2021, 66 (8): 124- 130
5 FU G, MOSES F. Overload permit checking based on structural reliability [C]// Transportation Research Record, Bridge Engineering Conference . Denver: Transportation Research Board, 1991: 279-289.
6 LENNER R, SÝKORA M Partial factors for loads due to special vehicles on road bridges[J]. Engineering Structures, 2016, 106: 137- 146
doi: 10.1016/j.engstruct.2015.10.024
7 CORREIA J R, ARRUDA M R T, BRANCO F A Structural assessment of reinforced-concrete arch underpasses subjected to vehicular overloads[J]. Journal of Performance of Constructed Facilities, 2014, 28 (2): 321- 329
doi: 10.1061/(ASCE)CF.1943-5509.0000410
8 CHOI H H, LIM J K, SEO J W, et al An overweight permit analysis system for bridge management[J]. KSCE Journal of Civil Engineering, 2006, 10: 123- 129
doi: 10.1007/BF02823930
9 CASAS J R, APARICIO A C Computer-based bridge management system for permit vehicle routing[J]. Computer-Aided Civil and Infrastructure Engineering, 2001, 16: 444- 454
doi: 10.1111/0885-9507.00246
10 张龙龙. 常规桥梁大件运输控制荷载研究[D]. 重庆: 重庆交通大学, 2014.
ZHANG Longlong. Study on control load of large-scale transportation on conventional bridge [D]. Chongqing: Chongqing Jiaotong University, 2014.
11 李键, 钟明全, 吴海军, 等 桥梁技术状况对公路大件运输承载力的影响[J]. 公路, 2016, 61 (11): 84- 89
LI Jian, ZHONG Mingquan, WU Haijun, et al Impact of bridge technical state on bearing capacity of large-cargo transport[J]. Highway, 2016, 61 (11): 84- 89
12 李浩恒. 梁式桥大件运输过桥安全性评估及控制轴载研究[D]. 哈尔滨: 哈尔滨工业大学, 2020.
LI Haoheng. Research on safety evaluation and control axle load of large transportation of beam [D]. Harbin: Harbin Institute of Technology, 2020.
13 李智斌. 中小跨径PC简支梁桥大件运输荷载控制标准研究[D]. 重庆: 重庆交通大学, 2012.
LI Zhibin. Research on load control standards of large-scale transport on medium and small span PC simply supported girder bridge [D]. Chongqing: Chongqing Jiaotong University, 2012.
14 HAN W, YUAN Y, CHEN X, et al Safety assessment of continuous beam bridges under overloaded customized transport vehicle load[J]. Journal of Bridge Engineering, 2018, 23 (6): 04018030
doi: 10.1061/(ASCE)BE.1943-5592.0001222
15 袁阳光, 周广利, 高文博, 等 考虑安全性与正常使用性能的大件车辆过桥评估方法[J]. 工程力学, 2021, 38 (7): 147- 158
YUAN Yangguang, ZHOU Guangli, GAO Wenbo, et al Assessment method for bridges under customized trucks by incorporating safety and serviceability[J]. Engineering Mechanics, 2021, 38 (7): 147- 158
doi: 10.6052/j.issn.1000-4750.2020.07.0490
16 YUAN Y, HAN W, XU X, et al. Permit checking of overloaded customized transport vehicle based on serviceability limit state reliability of concrete bridges [J]. Advances in Structural Engineering , 2020(5): 136943322097245.
17 刘航, 侯玉兰, 莫迪, 等 16m空心板桥超重车混合行驶过桥安全评估[J]. 公路交通科技: 应用技术版, 2020, 16 (6): 304- 306
LIU Hang, HOU Yulan, MO Di, et al Safety assessment of 16 m hollow slab bridge with overweight vehicle mixed driving[J]. Highway Transportation Technology: Application Technology Version, 2020, 16 (6): 304- 306
18 公路桥涵养护规范: JTG 5120-2021 [S]. 北京: 人民交通出版社, 2021.
19 HUANG P, WANG J, HAN W, et al Study on impact factors of small- and medium-span bridges under the special-purpose vehicle load[J]. Structures, 2022, 43: 606- 620
doi: 10.1016/j.istruc.2022.06.077
20 公路大件运输安全通行评价技术规范: JTG/T 2213-2023 [S]. 北京: 人民交通出版社, 2023.
21 HUANG P, WANG J, XU X, et al Improved multi-lane traffic flow simulation based on weigh-in-motion data[J]. Measurement, 2022, 188: 110408
doi: 10.1016/j.measurement.2021.110408
22 王俊峰. 基于足尺构件破坏试验的混凝土桥梁疲劳寿命预测与裂缝分形研究[D]. 西安: 长安大学, 2022.
WANG Junfeng. Service state evaluation and fatigue life prediction of concrete girder bridges based on fractal characteristics of cracks and time-varying load and resistance model [D]. Xi’an: Chang’an University, 2022.
23 李扬海, 鲍卫刚, 郭修武, 等. 公路桥梁结构可靠度与概率极限状态设计 [M]. 北京: 人民交通出版社, 1997.
24 公路桥梁承载能力检测评定规程: JTG/T J21-2011 [S]. 北京: 人民交通出版社, 2011.
25 袁阳光, 黄平明, 韩万水, 等 基于可靠度理论的中小跨径桥梁卡车载重限值研究[J]. 工程力学, 2017, 34 (8): 161- 170
YUAN Yangguang, HUANG Pingming, HAN Wanshui, et al Reliability based research on truck-load limitation of medium-small-span bridges[J]. Engineering Mechanics, 2017, 34 (8): 161- 170
doi: 10.6052/j.issn.1000-4750.2016.04.0323
26 交通部专家委员会. 中华人民共和国交通行业 公路桥梁通用图[M]. 北京: 人民交通出版社, 2008.
27 黄平明, 袁阳光, 赵建峰, 等 重载交通下空心板桥梁承载能力安全性[J]. 交通运输工程学报, 2017, 17 (3): 1- 12
HUANG Pingming, YUAN Yangguang, ZHAO Jianfeng, et al Bearing capacity safety of hollow slab bridge under heavy traffic load[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (3): 1- 12
doi: 10.3969/j.issn.1671-1637.2017.03.001
[1] 周宇,甘露一,狄生奎,贺文宇,李宁波. 基于应变影响线的桥梁模型修正试验[J]. 浙江大学学报(工学版), 2024, 58(3): 537-546.
[2] 马志元,刘江,刘永健,吕毅,张国靖. 钢-混组合梁桥有效温度取值的地域差异性[J]. 浙江大学学报(工学版), 2022, 56(5): 909-919.
[3] 向胜涛,王达. 基于改进量子遗传算法的模型交互修正方法[J]. 浙江大学学报(工学版), 2022, 56(1): 100-110.
[4] 冀伟,邵天彦. 多跨连续梁桥顶推施工双导梁的优化分析[J]. 浙江大学学报(工学版), 2021, 55(7): 1289-1298.
[5] 王立国,邵旭东,曹君辉,陈玉宝,何广,王洋. 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报(工学版), 2020, 54(10): 2027-2037.
[6] 戴显荣,王路,王昌将,王晓阳,沈锐利. 多塔悬索桥全竖向摩擦板式抗滑方案[J]. 浙江大学学报(工学版), 2019, 53(9): 1697-1703.
[7] 李明, 刘扬, 杨兴胜. 考虑轴重相关的随机车流荷载效应[J]. 浙江大学学报(工学版), 2019, 53(1): 78-88.
[8] 赵人达, 贾毅, 占玉林, 王永宝, 廖平, 李福海, 庞立果. 强震区多跨长联连续梁桥减隔震设计[J]. 浙江大学学报(工学版), 2018, 52(5): 886-895.
[9] 涂志斌,黄铭枫,楼文娟. 风浪耦合作用下桥塔基础体系的极限荷载效应[J]. 浙江大学学报(工学版), 2016, 50(5): 813-821.
[10] 项贻强,刘成熹,唐国斌,陈雪奖,吴天真,罗晓峰. 计算独柱墩帽梁承载力的改进撑杆-系杆模型[J]. J4, 2012, 46(7): 1248-1254.
[11] 叶雨清 陈勇 孙炳楠 楼文娟 俞菊虎. 钱江四桥健康监测特征指标趋势分析[J]. J4, 2009, 43(2): 394-400.