土木与建筑工程 |
|
|
|
|
基于多模型Stacking融合的基坑测斜时序预测 |
胡比澜1,2( ),王洋洋1,张永强1,*( ) |
1. 浙江大学 建筑工程学院,浙江 杭州 310058 2. 国家电投集团云南国际电力投资有限公司,云南 昆明 650228 |
|
Time series prediction of horizontal displacement in foundation pits based on Stacking multi-model |
Bilan HU1,2( ),Yangyang WANG1,Yongqiang ZHANG1,*( ) |
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China 2. SPIC Yunnan International Power Investment Limited Company, Kunming 650228, China |
1 |
钱七虎 迎接我国城市地下空间开发高潮[J]. 岩土工程学报, 1998, 20 (1): 112- 113 QIAN Qihu Meet the upsurge of urban underground space development in China[J]. Chinese Journal of Geotechnical Engineering, 1998, 20 (1): 112- 113
|
2 |
钱七虎 中国城市地下空间开发利用的现状评价和前景展望[J]. 民防苑, 2006, (Suppl.1): 1- 5 QIAN Qihu Current situation evaluation and prospect of urban underground space development and utilization in China[J]. Civil Defence Realm, 2006, (Suppl.1): 1- 5
|
3 |
油新华, 何光尧, 王强勋, 等 我国城市地下空间利用现状及发展趋势[J]. 隧道建设(中英文), 2019, 39 (2): 173- 188 YOU Xinhua, HE Guangyao, WANG Qiangxun, et al Current status and development trend of urban underground space in China[J]. Tunnel Construction, 2019, 39 (2): 173- 188
|
4 |
余苑航, 阎波 我国超大城市地下空间开发现状及其发展趋势[J]. 地下空间与工程学报, 2021, 17 (Suppl.1): 1- 7 YU Yuanhang, BO Yan Present situation and development trend of underground space in megacity in China[J]. Chinese Journal of Underground Space and Engineering, 2021, 17 (Suppl.1): 1- 7
|
5 |
李尚明, 洪成雨, 姬凤玲, 等 深基坑的机器视觉监测与变形预测研究[J]. 地下空间与工程学报, 2023, 19 (3): 992- 1000 LI Shangming, HONG Chengyu, JI Fengling, et al Study on machine vision monitoring and deformation prediction of deep foundation pit[J]. Chinese Journal of Underground Space and Engineering, 2023, 19 (3): 992- 1000
|
6 |
曹净, 丁文云, 赵党书, 等 基于LSSVM-ARMA模型的基坑变形时间序列预测[J]. 岩土力学, 2014, 35 (Suppl.2): 579- 586 CAO Jing, DING Wenyun, ZHAO Dangshu, et al Time series forecast of foundation pit deformation based on LSSVM-ARMA model[J]. Rock and Soil Mechanics, 2014, 35 (Suppl.2): 579- 586
|
7 |
程龙飞, 袁宝远 基于前馈神经网络的基坑测斜位移校正与变形预测研究[J]. 岩石力学与工程学报, 2004, 23 (12): 2038- 2041 CHENG Longfei, YUAN Baoyuan Displacement correction and deformation forecast of foundation pit with feedforward neural network[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23 (12): 2038- 2041
doi: 10.3321/j.issn:1000-6915.2004.12.016
|
8 |
王雨, 刘国彬, 屠传豹 基于遗传-GRN在深基坑地连墙测斜预测中的研究[J]. 岩土工程学报, 2012, 34 (Suppl.1): 167- 171 WANG Yu, LIU Guobin, TU Chuanbao Deformation prediction for deep excavations based on genetic algorithms-GRNN[J]. Chinese Journal of Geotechnical Engineering, 2012, 34 (Suppl.1): 167- 171
|
9 |
洪宇超, 钱建固, 叶源新, 等 基于时空关联特征的CNN-LSTM模型在基坑工程变形预测中的应用[J]. 岩土工程学报, 2021, 43 (Suppl.2): 108- 111 HONG Yuchao, QIAN Jiangu, YE Yuanxin, et al Application of CNN-LSTM model based on spatiotemporal correlation characteristics in deformation prediction of excavation engineering[J]. Chinese Journal of Geotechnical Engineering, 2021, 43 (Suppl.2): 108- 111
|
10 |
陈艳茹 基于遗传算法和极限学习机的智能算法在基坑变形预测中的应用[J]. 隧道建设(中英文), 2018, 38 (6): 941- 947 CHEN Yanru Application of intelligent algorithm based on genetic algorithm and extreme learning machine to deformation prediction of foundation pit[J]. Tunnel Construction, 2018, 38 (6): 941- 947
|
11 |
李彦杰, 薛亚东, 岳磊, 等 基于遗传算法-BP神经网络的深基坑变形预测[J]. 地下空间与工程学报, 2015, 11 (Suppl.2): 741- 749 LI Yanjie, XUE Yadong, YUE Lei, et al Displacement prediction of deep foundation pit based on genetic algorithms and BP neural network[J]. Chinese Journal of Underground Space and Engineering, 2015, 11 (Suppl.2): 741- 749
|
12 |
刘锦, 李峰辉, 刘秀秀 优化GA-BP神经网络模型及基坑变形预测[J]. 隧道建设(中英文), 2021, 41 (10): 1733- 1739 LIU Jin, LI Fenghui, LIU Xiuxiu Optimized genetic algorithm-back propagation neural network model and its application in foundation pit deformation prediction[J]. Tunnel Construction, 2021, 41 (10): 1733- 1739
|
13 |
徐长节, 李欣雨 基于人工神经网络的深基坑支护结构侧移预测[J]. 上海交通大学学报, 2024, 58 (11): 1735- 1744 XU Changjie, LI Xinyu Lateral deformation prediction of deep foundation retaining structures based on artificial neural network[J]. Journal of Shanghai Jiao Tong University, 2024, 58 (11): 1735- 1744
|
14 |
LI X, PAN Y, ZHANG L, et al Dynamic and explainable deep learning-based risk prediction on adjacent building induced by deep excavation[J]. Tunnelling and Underground Space Technology, 2023, 140: 105243
doi: 10.1016/j.tust.2023.105243
|
15 |
DING Q, GUO C, FAN X, et al Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass[J]. Engineering Geology, 2023, 325: 107281
doi: 10.1016/j.enggeo.2023.107281
|
16 |
秦胜伍, 张延庆, 张领帅, 等 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报: 地球科学版, 2021, 51 (5): 1316- 1323 QIN Shengwu, ZHANG Yanqing, ZHANG Lingshuai, et al Prediction of ground settlement around deep foundation pit based on Stacking model fusion[J]. Journal of Jilin University: Earth Science Edition, 2021, 51 (5): 1316- 1323
|
17 |
XU C, CAO B T, YUAN Y, et al A multi-fidelity deep operator network (DeepONet) for fusing simulation and monitoring data: application to real-time settlement prediction during tunnel construction[J]. Engineering Applications of Artificial Intelligence, 2024, 133: 108156
doi: 10.1016/j.engappai.2024.108156
|
18 |
袁金荣, 赵福勇 基坑变形预测的时间序列分析[J]. 土木工程学报, 2001, 34 (6): 55- 59 YUAN Jinrong, ZHAO Fuyong Predicting deformation of foundation pit using ANN[J]. China Civil Engineering Journal, 2001, 34 (6): 55- 59
doi: 10.3321/j.issn:1000-131X.2001.06.011
|
19 |
ZHOU H , ZHANG S , PENG J , et al. Informer: beyond efficient transformer for long sequence time-Series forecasting [C]// Proceedings of the Thirty-Fifth AAAI Conference on Artificial Intelligence . [S.l.]: AAAI, 2021: 11106–11115.
|
20 |
陈振宇, 刘金波, 李晨, 等 基于LSTM与XGBoost组合模型的超短期电力负荷预测[J]. 电网技术, 2020, 44 (2): 614- 620 CHEN Zhenyu, LIU Jinbo, LI Chen, et al Ultra short-term power load forecasting based on combined LSTM-XGBoost model[J]. Power System Technology, 2020, 44 (2): 614- 620
|
21 |
COVER T, HART P. Nearest neighbor pattern classification [J], IEEE Transactions Information Theory , 1967, 13(1): 21–27.
|
22 |
CHEN T, GUESTRIN C. XGBoost: a scalable tree boosting system [C]// Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining . San Francisco: ACM, 2016: 785–794.
|
23 |
史佳琪, 张建华 基于多模型融合Stacking集成学习方式的负荷预测方法[J]. 中国电机工程学报, 2019, 39 (14): 4030- 4041 SHI Jiaqi, ZHANG Jianhua Load forecasting based on multi-model by stacking ensemble learning[J]. Proceedings of the CSEE, 2019, 39 (14): 4030- 4041
|
24 |
LI L, SITU R, GAO J, et al. A hybrid model combining convolutional neural network with XGBoost for predicting social media popularity [C]// Proceedings of the 25th ACM International Conference on Multimedia . [S.l.]: ACM, 2017: 1912–1917.
|
25 |
李国杰 有关人工智能的若干认识问题[J]. 中国计算机学会通讯, 2021, 17 (7): 44- 51 LI Guojie Some cognitive problems about artificial intelligence[J]. Communications of the CCF, 2021, 17 (7): 44- 51
|
26 |
李国杰, 程学旗 大数据研究: 未来科技及经济社会发展的重大战略领域——大数据的研究现状与科学思考[J]. 中国科学院院刊, 2012, 27 (6): 647- 657 LI Guojie, CHENG Xueqi Research status and scientific thinking of big data[J]. Bulletin of Chinese Academy of Sciences, 2012, 27 (6): 647- 657
|
27 |
孙钧, 温海洋 人工智能科学在软土地下工程施工变形预测与控制中的应用实践——理论基础、方法实施、精细化智能管理(示例)[J]. 隧道建设(中英文), 2020, 40 (1): 1- 8 SUN Jun, WEN Haiyang Application of artificial intelligence science to construction deformation prediction and control of underground engineering in soft soil: cases study on theoretical foundation, method application and fine intelligent technical management[J]. Tunnel Construction, 2020, 40 (1): 1- 8
|
28 |
PAN L X, ZHANG Y R, CAO M S, et al. Parameter sensitivity analysis of geotechnical engineering system using neural network ensemble [C]// Proceedings of the 2015 International Conference on Artificial Intelligence and Industrial Engineering . Phuket: Atlantis Press, 2015: 196–199.
|
29 |
钟国强, 王浩, 张国华, 等 基于RS-MIV-ELM模型的基坑水平位移影响因素分析和预测[J]. 上海交通大学学报, 2018, 52 (11): 1508- 1515 ZHONG Guoqiang, WANG Hao, ZHANG Guohua, et al Analysis and prediction of factors affecting horizontal displacement of foundation pit based on RS-MIV-ELM model[J]. Journal of Shanghai Jiao Tong University, 2018, 52 (11): 1508- 1515
|
30 |
林宣, 徐海涛, 高旭, 等 软土地区深基坑承压水降水对地表沉降影响分析[J]. 铁道建筑技术, 2022, (4): 156- 160 LIN Xuan, XU Haitao, GAO Xu, et al Influence of confined water dewatering on surface settlement of deep foundation pit in soft soil area[J]. Railway Construction Technology, 2022, (4): 156- 160
|
31 |
浙江省建筑设计研究院, 浙江大学. 建筑基坑工程技术规程: DB33/T 1096-2014 [S]. 杭州: 浙江工商大学出版社, 2014.
|
32 |
JAIN A. XGBoost parameters tuning: a complete guide with python codes [EB/OL]. [2024−01−21]. https://www.analyticsvidhya.com/blog/2016/03/complete-guide-parameter-tuning-xgboost-with-codes-python/.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|