|
|
|
| 基于锥规划重建的运动关节康复外骨骼定制设计 |
屠正欣( ),徐敬华*( ),张树有 |
| 浙江大学 设计工程研究所,浙江 杭州 310058 |
|
| Rehabilitation exoskeleton customized design of kinematic joint based on cone programming reconstruction |
Zhengxin TU( ),Jinghua XU*( ),Shuyou ZHANG |
| Institute of Design Engineering, Zhejiang University, Hangzhou 310058, China |
| 1 |
HUNTER D J, MARCH L, CHEW M Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396 (10264): 1711- 1712
doi: 10.1016/S0140-6736(20)32230-3
|
| 2 |
CIEZA A, CAUSEY K, KAMENOV K, et al Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396 (10267): 2006- 2017
doi: 10.1016/S0140-6736(20)32340-0
|
| 3 |
LALWALA M, DEVANE K S, KOYA B, et al Development and validation of an active muscle simplified finite element human body model in a standing posture[J]. Annals of Biomedical Engineering, 2023, 51 (3): 632- 641
doi: 10.1007/s10439-022-03077-x
|
| 4 |
VIANELLO L, MOURET J B, DALIN E, et al Human posture prediction during physical human-robot interaction[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 6046- 6053
doi: 10.1109/LRA.2021.3086666
|
| 5 |
MOUSSE M A, ATOHOUN B. Saliency based human fall detection in smart home environments using posture recognition [J]. Health Informatics Journal, 2021, 27(3): 14604582211030954.
|
| 6 |
TAKANO W, LEE H Action description from 2D human postures in care facilities[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 774- 781
doi: 10.1109/LRA.2020.2965394
|
| 7 |
SIMON A A, ALEMI M M, ASBECK A T Kinematic effects of a passive lift assistive exoskeleton[J]. Journal of Biomechanics, 2021, 120: 110317
doi: 10.1016/j.jbiomech.2021.110317
|
| 8 |
LERNER Z F, DAMIANO D L, BULEA T C Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy[J]. Journal of Biomechanics, 2019, 87: 142- 149
doi: 10.1016/j.jbiomech.2019.02.025
|
| 9 |
BARRUTIA W S, BRATT J, FERRIS D P A human lower limb mechanical phantom for the testing of knee exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2497- 2506
doi: 10.1109/TNSRE.2023.3276424
|
| 10 |
陈栋, 李伟达, 张虹淼, 等 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报: 工学版, 2024, 58 (4): 772- 778 CHEN Dong, LI Weida, ZHANG Hongmiao, et al Ankle flexible exoskeleton based on force feedback admittance control[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 772- 778
|
| 11 |
MISSIROLI F, LOTTI N, TRICOMI E, et al Rigid, soft, passive, and active: a hybrid occupational exoskeleton for bimanual multijoint assistance[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 2557- 2564
doi: 10.1109/LRA.2022.3142447
|
| 12 |
DE GROOF S, ZHANG Y, PEYRODIE L, et al Design and control of an individualized hip exoskeleton capable of gait phase synchronized flexion and extension torque assistance[J]. IEEE Access, 2023, 11: 96206- 96220
doi: 10.1109/ACCESS.2023.3311352
|
| 13 |
PERRY B, SIVAK J, STOKIC D Providing unloading by exoskeleton improves shoulder flexion performance after stroke[J]. Experimental Brain Research, 2021, 239 (5): 1539- 1549
doi: 10.1007/s00221-021-06070-3
|
| 14 |
HACHAJ T, OGIELA M R RMoCap: an R language package for processing and kinematic analyzing motion capture data[J]. Multimedia Systems, 2020, 26 (2): 157- 172
doi: 10.1007/s00530-019-00633-9
|
| 15 |
DOBOS T J, BENCH R W G, MCKINNON C D, et al Validation of pitchAITM markerless motion capture using marker-based 3D motion capture[J]. Sports Biomechanics, 2025, 24 (3): 587- 607
doi: 10.1080/14763141.2022.2137425
|
| 16 |
ZIEGLER J, REITER A, GATTRINGER H, et al Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data[J]. Medical Engineering and Physics, 2020, 84: 193- 202
doi: 10.1016/j.medengphy.2020.08.009
|
| 17 |
HOUSTON A, WALTERS V, CORBETT T, et al Evaluation of a multi-sensor Leap Motion setup for biomechanical motion capture of the hand[J]. Journal of Biomechanics, 2021, 127: 110713
doi: 10.1016/j.jbiomech.2021.110713
|
| 18 |
SAADAT S, ASIKUZZAMAN M, PICKERING M R, et al A fast and robust framework for 3D/2D model to multi-frame fluoroscopy registration[J]. IEEE Access, 2021, 9: 134223- 134239
doi: 10.1109/ACCESS.2021.3114366
|
| 19 |
MATSUKI K, MATSUKI K O, KENMOKU T, et al In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities[J]. Gait and Posture, 2017, 58: 214- 219
doi: 10.1016/j.gaitpost.2017.07.116
|
| 20 |
SHIH K S, HSU C C Three-dimensional musculoskeletal model of the lower extremity: integration of gait analysis data with finite element analysis[J]. Journal of Medical and Biological Engineering, 2022, 42 (4): 436- 444
doi: 10.1007/s40846-022-00734-3
|
| 21 |
THIENKAROCHANAKUL K, JAVADI A A, AKRAMI M, et al Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis[J]. Journal of Medical and Biological Engineering, 2020, 40 (3): 409- 418
doi: 10.1007/s40846-020-00523-w
|
| 22 |
SIDHU S P, MOSLEMIAN A, YAMOMO G, et al Lateral subvastus lateralis versus medial parapatellar approach for total knee arthroplasty: a cadaveric biomechanical study[J]. The Knee, 2020, 27 (6): 1735- 1745
doi: 10.1016/j.knee.2020.09.022
|
| 23 |
NG D Q K, LIM C T, RAMRUTTUN A K, et al Biomechanical analysis of proximal tibia bone grafting and the effect of the size of osteotomy using a validated finite element model[J]. Medical and Biological Engineering and Computing, 2019, 57 (8): 1823- 1832
doi: 10.1007/s11517-019-01988-x
|
| 24 |
PARK S, LEE S, YOON J, et al Finite element analysis of knee and ankle joint during gait based on motion analysis[J]. Medical Engineering and Physics, 2019, 63: 33- 41
doi: 10.1016/j.medengphy.2018.11.003
|
| 25 |
XU J H, TU Z X, XU J X, et al Biomechanical strengthening design for limb articulation based on reconstructed skeleton kinesthetics[J]. Journal of Medical and Biological Engineering, 2021, 41 (5): 715- 729
|
| 26 |
XU J, TU Z, ZHANG S, et al Customized design for ergonomic products via additive manufacturing considering joint biomechanics[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2 (3): 100085
doi: 10.1016/j.cjmeam.2023.100085
|
| 27 |
TU Z, XU J, DONG Z, et al Load-bearing optimization for customized exoskeleton design based on kinematic gait reconstruction[J]. Medical and Biological Engineering and Computing, 2025, 63 (3): 807- 822
|
| 28 |
TU Z, XU J, DONG Z, et al Biomechanical evaluation for bone arthrosis morphology based on reconstructed dynamic kinesiology[J]. Medical Engineering and Physics, 2025, 135: 104278
doi: 10.1016/j.medengphy.2024.104278
|
| 29 |
MOSTAFAVI K, JAFARI A, FARAHMAND F A surface registration technique for estimation of 3-D kinematics of joints[J]. Studies in Health Technology and Informatics, 2009, 142: 204- 206
|
| 30 |
LIU Y, YAO D, ZHAI Z, et al Fusion of multimodality image and point cloud for spatial surface registration for knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18 (5): e2426
|
| 31 |
NAGURA T, DYRBY C O, ALEXANDER E J, et al Mechanical loads at the knee joint during deep flexion[J]. Journal of Orthopaedic Research, 2002, 20 (4): 881- 886
doi: 10.1016/S0736-0266(01)00178-4
|
| 32 |
SENTER C, HAME S L Biomechanical analysis of tibial torque and knee flexion angle[J]. Sports Medicine, 2006, 36 (8): 635- 641
doi: 10.2165/00007256-200636080-00001
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|