Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (10): 2005-2013    DOI: 10.3785/j.issn.1008-973X.2025.10.001
机械工程     
基于锥规划重建的运动关节康复外骨骼定制设计
屠正欣(),徐敬华*(),张树有
浙江大学 设计工程研究所,浙江 杭州 310058
Rehabilitation exoskeleton customized design of kinematic joint based on cone programming reconstruction
Zhengxin TU(),Jinghua XU*(),Shuyou ZHANG
Institute of Design Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2745 KB)   HTML
摘要:

为了提升人体工学康复器具与个体关节运动学的匹配性能,提出运动关节康复外骨骼定制设计的新方法. 通过医学图像重建骨骼关节,利用锥规划迭代计算形貌特征匹配关系,重建个性化的关节运动姿态,提高重建精度. 与分层匹配方法相比,所提锥规划重建方法的均方根误差、平均绝对误差和最大误差分别降低了10.95%、12.29%和6.05%. 基于重建的运动关节姿态同步推算其瞬时旋转中心轨迹,结合三心定理,以减小瞬时旋转中心轨迹误差为目标,优化康复外骨骼反向双摇杆机构设计,实现运动域中精确的人机协同变瞬心运动. 结合增材制造约束进行拓扑优化,通过赫兹接触理论分析外骨骼零件的载荷传递和应力分布,优化材料分布,实现康复外骨骼结构的个性化定制设计.

关键词: 锥规划重建运动关节康复外骨骼定制设计载荷传递变瞬心运动    
Abstract:

A new method for the customized design of a kinematic joint rehabilitation exoskeleton was proposed to enhance the matching performance between the ergonomic rehabilitation appliance and the individual joint kinesiology. The bone joint was reconstructed from medical images, improving the reconstruction accuracy, while cone programming iteration was employed to calculate the matching relationship of morphology features, from which the individual joint kinematic posture was reestablished. Compared to the hierarchical matching method, the proposed cone programming reconstruction method reduced the root mean square error, mean absolute error, and maximum error by 10.95%, 12.29%, and 6.05%, respectively. Based on the reconstructed kinematic joint posture, the trajectory of the instantaneous rotation center was simultaneously reckoned. Combined with the three-center theorem, the design of the reverse double rocker mechanism for the rehabilitation exoskeleton was optimized to reduce the instantaneous rotation center trajectory error, resulting in precise human-machine collaborative variable instantaneous center motion in the motion domain. Topological optimization with additive manufacturing constraints was introduced to analyze the load transfer and stress distribution of the exoskeleton part with Hertz contact theory, thereby optimizing material distribution and facilitating the individual customized design of the rehabilitation exoskeleton structure.

Key words: cone programming reconstruction    kinematic joint    rehabilitation exoskeleton    customized design    load transfer    variable instantaneous center motion
收稿日期: 2024-10-14 出版日期: 2025-10-27
CLC:  TP 391  
基金资助: 国家重点研发计划资助项目(2022YFB3303303).
通讯作者: 徐敬华     E-mail: 21925099@zju.edu.cn;xujh@zju.edu.cn
作者简介: 屠正欣(1997—),女,博士生,从事定制设计研究. orcid.org/0000-0003-4098-1328. E-mail:21925099@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
屠正欣
徐敬华
张树有

引用本文:

屠正欣,徐敬华,张树有. 基于锥规划重建的运动关节康复外骨骼定制设计[J]. 浙江大学学报(工学版), 2025, 59(10): 2005-2013.

Zhengxin TU,Jinghua XU,Shuyou ZHANG. Rehabilitation exoskeleton customized design of kinematic joint based on cone programming reconstruction. Journal of ZheJiang University (Engineering Science), 2025, 59(10): 2005-2013.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.10.001        https://www.zjujournals.com/eng/CN/Y2025/V59/I10/2005

图 1  左膝关节CT图像
图 2  股骨远端层截面面积和层截面面积差分
图 3  不同方法重建的左膝关节运动姿态均方根误差迭代曲线
$ \theta $/(°)表面匹配分层匹配锥规划重建
RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $RMSEMAXRMSEMIN$ \overline {{\text{RMSE}}} $
4.8323.375.018.8221.343.778.3821.613.428.88
25.5520.965.249.5322.804.028.3022.593.628.29
47.5920.645.2911.0222.483.408.9621.443.038.52
69.2422.406.1010.0223.314.388.2523.393.908.65
94.4023.375.018.8221.343.778.3821.613.428.88
116.3524.465.209.3323.523.099.2421.683.509.16
表 1  不同方法重建的左膝关节运动姿态迭代过程均方根误差对比
图 4  矢状面上左胫股关节的锥规划重建运动姿态
$ \theta $/(°)dc/mmcc/m?1
4.8311.253.36×10?3
25.5513.281.21×10?2
47.5917.152.17×10?2
69.2421.291.82×10?2
94.4021.781.80×10?2
116.3525.943.29×10?3
表 2  不同屈曲角度下的瞬时旋转中心参数
$ \theta $/(°)表面匹配分层匹配锥规划重建
RMSEMAEMERMSEMAEMERMSEMAEME
4.834.550.0220.343.470.0115.423.210.0114.59
25.555.240.0320.164.020.0217.013.620.0216.12
47.595.290.0320.343.400.0215.423.030.0114.59
69.246.100.0320.894.380.0319.463.900.0218.29
94.405.010.0322.123.770.0218.913.420.0217.43
116.355.200.0424.663.870.0219.353.500.0218.44
表 3  不同方法的左膝关节运动姿态重建精度对比
图 5  左膝关节的人体工学康复外骨骼概念设计
图 6  左膝关节外骨骼变瞬心机构运动学模型
参数数值
方案一方案二方案三
$ {L}_{1} $/mm41.3142.2540.84
$ {L}_{2} $/mm58.1656.4855.25
$ {L}_{3} $/mm43.3041.5440.43
$ {L}_{4} $/mm55.1855.6453.72
$ {\alpha }_{1} $/(°)4.76~25.154.42~26.603.99~24.36
$ {\alpha }_{2} $/(°)36.46~43.9733.19~41.9538.08~45.93
$ {\alpha }_{3} $/(°)9.7510.1710.02
$ {\alpha }_{4} $/(°)131.44~144.73130.42~145.93131.94~145.30
表 4  不同方案的变瞬心机构设计参数
图 7  矢状面上2种瞬时旋转中心的轨迹对比
图 8  康复外骨骼左小腿组件等效应力及载荷传递分布
图 9  康复外骨骼左小腿组件应变能迭代曲线
$ {V_{\text{s}}} $/%JMAX/(105 J)JMIN/(105 J)
457.335.42
407.935.44
表 5  不同体积约束下拓扑优化结构的应变能
图 10  数字光处理打印的康复外骨骼左小腿组件
1 HUNTER D J, MARCH L, CHEW M Osteoarthritis in 2020 and beyond: a lancet commission[J]. Lancet, 2020, 396 (10264): 1711- 1712
doi: 10.1016/S0140-6736(20)32230-3
2 CIEZA A, CAUSEY K, KAMENOV K, et al Global estimates of the need for rehabilitation based on the Global Burden of Disease study 2019: a systematic analysis for the Global Burden of Disease Study 2019[J]. The Lancet, 2020, 396 (10267): 2006- 2017
doi: 10.1016/S0140-6736(20)32340-0
3 LALWALA M, DEVANE K S, KOYA B, et al Development and validation of an active muscle simplified finite element human body model in a standing posture[J]. Annals of Biomedical Engineering, 2023, 51 (3): 632- 641
doi: 10.1007/s10439-022-03077-x
4 VIANELLO L, MOURET J B, DALIN E, et al Human posture prediction during physical human-robot interaction[J]. IEEE Robotics and Automation Letters, 2021, 6 (3): 6046- 6053
doi: 10.1109/LRA.2021.3086666
5 MOUSSE M A, ATOHOUN B. Saliency based human fall detection in smart home environments using posture recognition [J]. Health Informatics Journal, 2021, 27(3): 14604582211030954.
6 TAKANO W, LEE H Action description from 2D human postures in care facilities[J]. IEEE Robotics and Automation Letters, 2020, 5 (2): 774- 781
doi: 10.1109/LRA.2020.2965394
7 SIMON A A, ALEMI M M, ASBECK A T Kinematic effects of a passive lift assistive exoskeleton[J]. Journal of Biomechanics, 2021, 120: 110317
doi: 10.1016/j.jbiomech.2021.110317
8 LERNER Z F, DAMIANO D L, BULEA T C Computational modeling of neuromuscular response to swing-phase robotic knee extension assistance in cerebral palsy[J]. Journal of Biomechanics, 2019, 87: 142- 149
doi: 10.1016/j.jbiomech.2019.02.025
9 BARRUTIA W S, BRATT J, FERRIS D P A human lower limb mechanical phantom for the testing of knee exoskeletons[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2023, 31: 2497- 2506
doi: 10.1109/TNSRE.2023.3276424
10 陈栋, 李伟达, 张虹淼, 等 基于力反馈导纳控制的踝关节柔性外骨骼[J]. 浙江大学学报: 工学版, 2024, 58 (4): 772- 778
CHEN Dong, LI Weida, ZHANG Hongmiao, et al Ankle flexible exoskeleton based on force feedback admittance control[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (4): 772- 778
11 MISSIROLI F, LOTTI N, TRICOMI E, et al Rigid, soft, passive, and active: a hybrid occupational exoskeleton for bimanual multijoint assistance[J]. IEEE Robotics and Automation Letters, 2022, 7 (2): 2557- 2564
doi: 10.1109/LRA.2022.3142447
12 DE GROOF S, ZHANG Y, PEYRODIE L, et al Design and control of an individualized hip exoskeleton capable of gait phase synchronized flexion and extension torque assistance[J]. IEEE Access, 2023, 11: 96206- 96220
doi: 10.1109/ACCESS.2023.3311352
13 PERRY B, SIVAK J, STOKIC D Providing unloading by exoskeleton improves shoulder flexion performance after stroke[J]. Experimental Brain Research, 2021, 239 (5): 1539- 1549
doi: 10.1007/s00221-021-06070-3
14 HACHAJ T, OGIELA M R RMoCap: an R language package for processing and kinematic analyzing motion capture data[J]. Multimedia Systems, 2020, 26 (2): 157- 172
doi: 10.1007/s00530-019-00633-9
15 DOBOS T J, BENCH R W G, MCKINNON C D, et al Validation of pitchAITM markerless motion capture using marker-based 3D motion capture[J]. Sports Biomechanics, 2025, 24 (3): 587- 607
doi: 10.1080/14763141.2022.2137425
16 ZIEGLER J, REITER A, GATTRINGER H, et al Simultaneous identification of human body model parameters and gait trajectory from 3D motion capture data[J]. Medical Engineering and Physics, 2020, 84: 193- 202
doi: 10.1016/j.medengphy.2020.08.009
17 HOUSTON A, WALTERS V, CORBETT T, et al Evaluation of a multi-sensor Leap Motion setup for biomechanical motion capture of the hand[J]. Journal of Biomechanics, 2021, 127: 110713
doi: 10.1016/j.jbiomech.2021.110713
18 SAADAT S, ASIKUZZAMAN M, PICKERING M R, et al A fast and robust framework for 3D/2D model to multi-frame fluoroscopy registration[J]. IEEE Access, 2021, 9: 134223- 134239
doi: 10.1109/ACCESS.2021.3114366
19 MATSUKI K, MATSUKI K O, KENMOKU T, et al In vivo kinematics of early-stage osteoarthritic knees during pivot and squat activities[J]. Gait and Posture, 2017, 58: 214- 219
doi: 10.1016/j.gaitpost.2017.07.116
20 SHIH K S, HSU C C Three-dimensional musculoskeletal model of the lower extremity: integration of gait analysis data with finite element analysis[J]. Journal of Medical and Biological Engineering, 2022, 42 (4): 436- 444
doi: 10.1007/s40846-022-00734-3
21 THIENKAROCHANAKUL K, JAVADI A A, AKRAMI M, et al Stress distribution of the tibiofemoral joint in a healthy versus osteoarthritis knee model using image-based three-dimensional finite element analysis[J]. Journal of Medical and Biological Engineering, 2020, 40 (3): 409- 418
doi: 10.1007/s40846-020-00523-w
22 SIDHU S P, MOSLEMIAN A, YAMOMO G, et al Lateral subvastus lateralis versus medial parapatellar approach for total knee arthroplasty: a cadaveric biomechanical study[J]. The Knee, 2020, 27 (6): 1735- 1745
doi: 10.1016/j.knee.2020.09.022
23 NG D Q K, LIM C T, RAMRUTTUN A K, et al Biomechanical analysis of proximal tibia bone grafting and the effect of the size of osteotomy using a validated finite element model[J]. Medical and Biological Engineering and Computing, 2019, 57 (8): 1823- 1832
doi: 10.1007/s11517-019-01988-x
24 PARK S, LEE S, YOON J, et al Finite element analysis of knee and ankle joint during gait based on motion analysis[J]. Medical Engineering and Physics, 2019, 63: 33- 41
doi: 10.1016/j.medengphy.2018.11.003
25 XU J H, TU Z X, XU J X, et al Biomechanical strengthening design for limb articulation based on reconstructed skeleton kinesthetics[J]. Journal of Medical and Biological Engineering, 2021, 41 (5): 715- 729
26 XU J, TU Z, ZHANG S, et al Customized design for ergonomic products via additive manufacturing considering joint biomechanics[J]. Chinese Journal of Mechanical Engineering: Additive Manufacturing Frontiers, 2023, 2 (3): 100085
doi: 10.1016/j.cjmeam.2023.100085
27 TU Z, XU J, DONG Z, et al Load-bearing optimization for customized exoskeleton design based on kinematic gait reconstruction[J]. Medical and Biological Engineering and Computing, 2025, 63 (3): 807- 822
28 TU Z, XU J, DONG Z, et al Biomechanical evaluation for bone arthrosis morphology based on reconstructed dynamic kinesiology[J]. Medical Engineering and Physics, 2025, 135: 104278
doi: 10.1016/j.medengphy.2024.104278
29 MOSTAFAVI K, JAFARI A, FARAHMAND F A surface registration technique for estimation of 3-D kinematics of joints[J]. Studies in Health Technology and Informatics, 2009, 142: 204- 206
30 LIU Y, YAO D, ZHAI Z, et al Fusion of multimodality image and point cloud for spatial surface registration for knee arthroplasty[J]. The International Journal of Medical Robotics and Computer Assisted Surgery, 2022, 18 (5): e2426
31 NAGURA T, DYRBY C O, ALEXANDER E J, et al Mechanical loads at the knee joint during deep flexion[J]. Journal of Orthopaedic Research, 2002, 20 (4): 881- 886
doi: 10.1016/S0736-0266(01)00178-4
32 SENTER C, HAME S L Biomechanical analysis of tibial torque and knee flexion angle[J]. Sports Medicine, 2006, 36 (8): 635- 641
doi: 10.2165/00007256-200636080-00001
[1] 高铭宇,徐敬华,张树有,王康,谭建荣. 基于邻域拓扑重建的人体工学产品定制设计方法[J]. 浙江大学学报(工学版), 2025, 59(3): 597-605.