Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (8): 1636-1646    DOI: 10.3785/j.issn.1008-973X.2024.08.011
交通工程、土木工程     
组合桥面板切应力分布规律及横向剪力钉布置
张连振1(),宋谋1,李玉生2,樊文胜2,吴红林1,*()
1. 哈尔滨工业大学 交通科学与工程学院,黑龙江 哈尔滨 150090
2. 江西省交通投资集团有限公司,江西 南昌 330025
Distribution law of shear stress of composite bridge deck and arrangement of transverse shear stud
Lianzhen ZHANG1(),Mou SONG1,Yusheng LI2,Wensheng FAN2,Honglin WU1,*()
1. School of Transportation Science and Engineering, Harbin Institute of Technology, Harbin 150090, China
2. Jiangxi Communications Investment Group Limited Company, Nanchang 330025, China
 全文: PDF(2004 KB)   HTML
摘要:

根据组合桥面板截面的切应力、剪力流分布规律,在混凝土板和钢顶板完全连接的条件下,理论推导出混凝土板和钢顶板的剪力流承担比例,证明组合桥面板层间纵向剪力小于采用组合梁公式得到的计算值. 层间完全连接和通过弹簧单元模拟剪力钉离散连接开展的有限元计算均支持这一观点,验证了组合桥面板截面的竖向剪力主要由腹板承担的观点的正确性. 探究横向上剪力钉的布置方式. 结果表明,组合桥面板应沿横向全宽布置剪力钉,在腹板两侧进行加密,腹板正上方不宜布设剪力钉.

关键词: 组合桥面板剪力流层间纵向剪力剪力钉布置方式    
Abstract:

The shear flow bearing ratio of concrete slab and steel roof was theoretically deduced according to the distribution law of shear stress and shear flow of composite bridge deck section under the condition of complete connection between concrete slab and steel roof. It was proved that the longitudinal shear force between layers of composite bridge deck is smaller than that calculated by the formula of composite beam. The finite element calculation of complete connection between layers and discrete connection of shear studs simulated by spring element supported this view, which verified the correctness of the view that the vertical shear force of composite bridge deck section was mainly borne by the web. The arrangement of shear studs in transverse direction was explored. Results show that the shear studs should be arranged along the transverse full width of the composite bridge deck, the shear studs should be densified on both sides of the web, and the shear studs should not be arranged directly above the web.

Key words: composite bridge deck    shear flow    longitudinal shear force between floors    shear stud    layout method
收稿日期: 2023-07-15 出版日期: 2024-07-23
CLC:  U 448  
基金资助: 国家重点研发计划资助项目(2022YFC3801100).
通讯作者: 吴红林     E-mail: lianzhen@hit.edu.cn;wuhonglinhit@hit.edu.cn
作者简介: 张连振(1979—),男,教授,博导,从事高性能桥梁结构与桥梁智慧运维的研究. orcid.org/0000-0002-7460-163X. E-mail:lianzhen@hit.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张连振
宋谋
李玉生
樊文胜
吴红林

引用本文:

张连振,宋谋,李玉生,樊文胜,吴红林. 组合桥面板切应力分布规律及横向剪力钉布置[J]. 浙江大学学报(工学版), 2024, 58(8): 1636-1646.

Lianzhen ZHANG,Mou SONG,Yusheng LI,Wensheng FAN,Honglin WU. Distribution law of shear stress of composite bridge deck and arrangement of transverse shear stud. Journal of ZheJiang University (Engineering Science), 2024, 58(8): 1636-1646.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.08.011        https://www.zjujournals.com/eng/CN/Y2024/V58/I8/1636

图 1  工字形截面的切应力及剪力流分布
图 2  剪力流由腹板流入顶板的示意图
图 3  剪力流由腹板流入混凝土板和钢顶板的示意图
图 4  混凝土和钢顶板交接处的应力关系
图 5  工字形组合桥面板的结构尺寸
图 6  工字形组合桥面板结构的简支有限元模型
构件类型网格编号网格位置网格大小
混凝土板腹板两侧20 mm×30 mm
混凝土板腹板上方7 mm×30 mm
钢顶板腹板两侧20 mm×8 mm
钢顶板腹板上方7 mm×8 mm
钢腹板腹板7 mm×75.2 mm
钢底板腹板两侧36.25 mm×32 mm
钢底板腹板下方7 mm×32 mm
混凝土板、钢梁纵向50 mm
表 1  有限元模型的网格划分参数
材料种类E/MPaν
混凝土3.45×1040.2
钢材2.06×1050.3
表 2  组合桥面板结构所用材料的特性
图 7  荷载布置图
图 8  工字形组合桥面板翼缘的横向切应力分布
图 9  横向切应力的线性下降段拟合
ts/mmη
tc=15 cmtc=12 cmtc=10 cmtc=8 cm
100.7310.6850.6450.592
120.6940.6450.6020.547
140.6600.6090.5650.509
160.6300.5760.5310.476
180.6020.5470.5020.446
200.5760.5210.4760.421
表 3  组合桥面结构混凝土板承担的剪力流比例
图 10  竖向剪力计算的示意图
截面组成部分Vy/kN
混凝土板2.55
钢顶板0.829
钢腹板48.1
钢底板0.927
表 4  截面的竖向剪力分布
图 11  工字形组合桥面板截面的切应力分布
图 12  结合面的纵向切应力分布
图 13  剪力钉的布置方式
图 14  离散连接后翼缘的横向切应力分布
图 15  剪力钉连接时的剪力流分布规律
图 16  剪力钉纵向剪力的计算结果
图 17  3种剪力钉横向布置方式
图 18  3种布置方式下剪力钉所受的纵向剪力
截面组成部分Vy/kN
混凝土板2.05
钢顶板0.868
钢腹板48.6
钢底板0.947
表 5  竖向剪力的计算结果
剪力钉布置方式Vz/N
奇数均匀布置4384.50
偶数均匀布置4357.17
非均匀布置4778.57
现有理论计算9689.45
表 6  单排剪力钉承担的纵向剪力和
图 19  组合桥面板钢箱梁的截面
图 20  荷载布置图
图 21  剪力钉布置图
图 22  不同布置方法下剪力钉所受的纵向剪力(1/4截面)
截面组成部分Vy/kN
混凝土板3.793
钢顶板0.146
钢腹板115.519
钢底板0.350
表 7  竖向剪力的计算结果
剪力钉的布置方式Vz/N
均匀布置7 144.07
非均匀布置6 169.95
现有理论计算9 707
表 8  钢箱梁单排剪力钉承担的纵向剪力和
图 23  腹板两侧剪力钉不同加密间距下的截面剪力钉纵向剪力分布
6 GAO Liqiang Influence of crossbeam web cutout shape on fatigue performance of steel orthotropic deck[J]. Railway Standard Design, 2014, 58 (12): 67- 71
7 蒲黔辉, 高立强, 刘振标, 等 基于热点应力法的正交异性钢桥面板疲劳验算[J]. 西南交通大学学报, 2013, 48 (3): 395- 401
PU Qianhui, GAO Liqiang, LIU Zhenbiao, et al Fatigue assessment of orthotropic steel bridge deck based on hot spot stress method[J]. Journal of Southwest Jiaotong University, 2013, 48 (3): 395- 401
doi: 10.3969/j.issn.0258-2724.2013.03.001
8 钱冬生 关于正交异性钢桥面板的疲劳[J]. 桥梁建设, 1996, 1 (2): 10- 15
QIAN Dongsheng About the fatigue of orthotropic steel bridge deck[J]. Bridge Construction, 1996, 1 (2): 10- 15
9 YE Huawen, YANG Zhe, HAN Bing, et al Failure mechanisms governing fatigue strength of steel–SFRC composite bridge deck with U-ribs[J]. Journal of Bridge Engineering, 2021, 26 (4): 4021014.1- .4021014.9
10 曹君辉. 钢-薄层超高性能混凝土轻型组合桥面结构基本性能研究[D]. 长沙: 湖南大学, 2016.
CAO Junhui. Research on basic performance of steel-thin UHPC lightweight composite deck [D]. Changsha: Hunan University, 2016.
11 CAO Junhui, SHAO Xudong, DENG Lu, et al Static and fatigue behavior of short-headed studs embedded in a thin ultrahigh-performance concrete layer[J]. Journal of Bridge Engineering, 2017, 22 (1): 04017005.1- 04017005.16
12 王立国, 邵旭东, 曹君辉, 等 基于超短栓钉的钢-超薄UHPC组合桥面性能[J]. 浙江大学学报: 工学版, 2020, 54 (10): 2027- 2037
WANG Liguo, SHAO Xudong, CAO Junhui, et al Performance of steel-ultrathin UHPC composite bridge deck based on ultra-short headed studs[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (10): 2027- 2037
13 张庆. 正交异性钢-砼组合桥面的轮载扩散效应研究[D]. 成都: 西南交通大学, 2020.
1 ROBERT C, JOHN F In-service response of an orthotropic steel deck compared with design assumptions[J]. Transportation Research Record, 2000, 1696 (1): 100- 108
doi: 10.3141/1696-13
2 ZHANG Qinghua, LIU Yiming, BAO Yi, et al Fatigue performance of orthotropic steel-concrete composite deck with large-size longitudinal U-shaped ribs[J]. Engineering Structures, 2017, 150 (1): 864- 874
13 ZHANG Qing. The local diffusion effect of wheel load on orthotropic steel-concrete composite deck [D]. Chengdu: Southwest Jiaotong University, 2020.
14 SHI Zhanchong, SU Qingtian, KAVOURA F, et al Behavior of short-headed stud connectors in orthotropic steel-UHPC composite bridge deck under fatigue loading[J]. International Journal of Fatigue, 2022, 160 (1): 106845.1- 106845.14
15 GUAN Yanhua, WU Jiajie, SUN Renjuan, et al Shear behavior of short headed studs in steel-ECC composite structure[J]. Engineering Structures, 2022, 250 (1): 113423.1- 113423.15
16 KRUSZEWSKI D, WILLE K, ZAGHI A E Push-out behavior of headed shear studs welded on thin plates and embedded in UHPC[J]. Engineering Structures, 2018, 173 (1): 429- 441
17 张士红, 李斐然, 邵旭东 钢-UHPC组合桥面板界面抗剪理论及设计方法[J]. 公路工程, 2021, 46 (2): 157- 163
ZHANG Shihong, LI Feiran, SHAO Xudong Theory and design method of interfacial shear resistance for steel-UHPC composite bridge deck[J]. Highway Engineering, 2021, 46 (2): 157- 163
18 史占崇, 苏庆田, 陈亮 钢-UHPC组合桥面板中焊接栓钉的疲劳性能及设计布置方法[J]. 中国公路学报, 2023, 36 (6): 107- 122
SHI Zhanchong, SU Qingtian, CHEN Liang Fatigue behavior and design layout method of welded stud connectors in steel-UHPC composite bridge deck[J]. China Journal of Highway and Transport, 2023, 36 (6): 107- 122
19 蔡昊. 既有正交异性板STC连接机理及设计理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2021.
CAI Hao. Research on connection mechanism and design theory of existing orthotropic plate with STC [D]. Harbin: Harbin Institute of Technology, 2021.
20 聂建国. 钢-混凝土组合结构桥梁[M]. 北京: 人民交通出版社, 2011.
21 JOHNSON R P, ANDERSON D EN 1994 Eurocode 4: design of composite steel and concrete structures[J]. Civil Engineering, 2001, 144 (6): 33- 38
22 HIROSHI K, SHIGEYUKI M Evaluation for fatigue strength of shear studs in steel plate-concrete composite deck[J]. Journal of Structural Engineering, 2008, 64 (4): 765- 777
23 张少实. 新编材料力学[M]. 北京: 机械工业出版社, 2010.
24 中华人民共和国交通运输部. 公路钢混组合梁设计与施工规范: JTG/T D64-01—2015 [S]. 北京: 人民交通出版社, 2015.
25 宋谋. OSD-UHPC组合桥面板结构层间连接机理及设计理论研究[D]. 哈尔滨: 哈尔滨工业大学, 2022.
SONG Mou. Research on interlayer connection mechanism and design theory of OSD-UHPC composite bridge deck structure [D]. Harbin: Harbin Institute of Technology, 2022.
3 程庆, 王大明, 吴春颖 钢桥面沥青铺装层病害及成因分析[J]. 公路工程, 2010, 35 (3): 112- 115
CHENG Qing, WANG Daming, WU Chunying Analysis on diseases and their causes of steel deck asphalt pavement[J]. Highway Engineering, 2010, 35 (3): 112- 115
doi: 10.3969/j.issn.1674-0610.2010.03.027
4 赵国云 钢桥面灌注式树脂混凝土铺装材料与结构研究[J]. 公路交通科技, 2019, 36 (10): 67- 73
ZHAO Guoyun Study on material and structure of PRC for steel bridge deck pavement[J]. Journal of Highway and Transportation Research and Development, 2019, 36 (10): 67- 73
5 张清华, 卜一之, 李乔 正交异性钢桥面板疲劳问题的研究进展[J]. 中国公路学报, 2017, 30 (3): 14- 30
ZHANG Qinghua, BO Yizhi, LI Qiao Review on fatigue problems of orthotropic steel bridge deck[J]. China Journal of Highway and Transport, 2017, 30 (3): 14- 30
doi: 10.3969/j.issn.1001-7372.2017.03.002
[1] 董海燕,张友鹏,李少远,董海龙. 超大伞裙腕臂复合绝缘子积污分布的风洞模拟[J]. 浙江大学学报(工学版), 2019, 53(8): 1563-1571.