计算机技术、通信技术 |
|
|
|
|
基于场景流的可变速率动态点云压缩 |
江照意( ),邹文钦,郑晟豪,宋超,杨柏林*( ) |
浙江工商大学 计算机科学与技术学院,浙江 杭州 310018 |
|
Variable rate compression of point cloud based on scene flow |
Zhaoyi JIANG( ),Wenqin ZOU,Shenghao ZHENG,Chao SONG,Bailin YANG*( ) |
School of Computer Science and Technology, Zhejiang Gongshang University, Hangzhou 310018, China |
引用本文:
江照意,邹文钦,郑晟豪,宋超,杨柏林. 基于场景流的可变速率动态点云压缩[J]. 浙江大学学报(工学版), 2024, 58(2): 279-287.
Zhaoyi JIANG,Wenqin ZOU,Shenghao ZHENG,Chao SONG,Bailin YANG. Variable rate compression of point cloud based on scene flow. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 279-287.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.006
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I2/279
|
1 |
KATHARIYA B, LI L, LI Z, et al. Lossless dynamic point cloud geometry compression with inter compensation and traveling salesman prediction [C]// Data Compression Conference . Boston: IEEE, 2018: 414.
|
2 |
THANOU D, CHOU P A, FROSSARD P Graph-based compression of dynamic 3D point cloud sequences[J]. IEEE Transactions on Image Processing, 2016, 25 (4): 1765- 1778
doi: 10.1109/TIP.2016.2529506
|
3 |
DE QUEIROZ R L, CHOU P A Motion-compensated compression of dynamic voxelized point clouds[J]. IEEE Transactions on Image Processing, 2017, 26 (8): 3886- 3895
doi: 10.1109/TIP.2017.2707807
|
4 |
KAMMERL J, BLODOW N, RUSU R B, et al. Real-time compression of point cloud streams [C]// IEEE International Conference on Robotics and Automation . [S. l.]: IEEE, 2012: 778-785.
|
5 |
SUN X, MA H, SUN Y, et al A novel point cloud compression algorithm based on clustering[J]. IEEE Robotics and Automation Letters, 2019, 4 (2): 2132- 2139
doi: 10.1109/LRA.2019.2900747
|
6 |
BISWAS S, LIU J, WONG K, et al Muscle: multi sweep compression of lidar using deep entropy models[J]. Advances in Neural Information Processing Systems, 2020, 33 (2): 22170- 22181
|
7 |
YU S, SUN S, YAN W, et al A method based on curvature and hierarchical strategy for dynamic point cloud compression in augmented and virtual reality system[J]. Sensors, 2022, 22 (3): 1262
doi: 10.3390/s22031262
|
8 |
FAN T, GAO L, XU Y, et al. D-DPCC: deep dynamic point cloud compression via 3D motion prediction [C]// Proceedings of the 31st International Joint Conference on Artificial Intelligence . Vienna: [s. n.], 2022: 898-904.
|
9 |
GEORGE T, SEAN M, SUNG J, et al. Variable rate image compression with recurrent neural networks [C]// International Conference on Learning Representations . Puerto Rico: [s. n.], 2016.
|
10 |
CHEN T, MA Z. Variable bitrate image compression with quality scaling factors [C]// IEEE International Conference on Acoustics, Speech and Signal Processing . Barcelona: IEEE, 2020: 2163-2167.
|
11 |
YANG F, HERRANZ L, WEIJER J, et al. Variable rate deep image compression with modulated autoencoder [J]. IEEE Signal Processing Letters , 2020, 27: 331-335.
|
12 |
CUI Z, WANG J, GAO S, et al. Asymmetric gained deep image compression with continuous rate adaptation [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Baltimore: IEEE, 2021: 10532-10541.
|
13 |
MUZADDID M A, BEKSI W J. Variable rate compression for raw 3D point clouds [C]// International Conference on Robotics and Automation . Philadelphia: [s. n.], 2022: 8748-8755.
|
14 |
QI C R, YI L, SU H, et al. Pointnet++: deep hierarchical feature learning on point sets in a metric space [C]// Advances in Neural Information Processing Systems . Long Beach: [s. n.], 2017: 30.
|
15 |
WU W, WANG Z Y, LI Z, et al. Pointpwc-net: cost volume on point clouds for (self-) supervised scene flow estimation [C]// 16th European Conference on Computer Vision. Glasgow: Springer, 2020.
|
16 |
WU W, QI Z, FUXIN L. Pointconv: deep convolutional networks on 3d point clouds [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2019: 9621-9630.
|
17 |
ENGEL N, BELAGIANNIS V, DIETMAYER K Point transformer[J]. IEEE Access, 2021, 9 (1): 134826- 134840
|
18 |
HE Y, REN X, TANG D, et al. Density-preserving deep point cloud compression [C] // Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition . New Orleans: IEEE, 2022: 2333-2342.
|
19 |
LU G, OUYANG W, XU D, et al. Dvc: an end-to-end deep video compression framework [C]// Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2019: 11006-11015.
|
20 |
WU Y, HE K. Group normalization [C]// Proceedings of the European Conference on Computer Vision . Munich: [s. n.], 2018: 3-19.
|
21 |
HUANG L, WANG S, WONG K, et al. Octsqueeze: octree-structured entropy model for lidar compression [C] // Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition . Seattle: IEEE, 2020: 1313-1323.
|
22 |
MAHMOOD N, GHORBANI N, TROJE N F, et al. AMASS: archive of motion capture as surface shapes [C]// Proceedings of the IEEE/CVF International Conference on Computer Vision . Seoul: IEEE, 2019: 5442-5451.
|
23 |
SEBASTIAN S, MARIUS P, VITTORIO B, et al Emerging mpeg standards for point cloud compression[J]. IEEE Journal on Emerging and Selected Topics in Circuits and Systems, 2019, 9 (1): 133- 148
doi: 10.1109/JETCAS.2018.2885981
|
24 |
ZHANG Z. Improved Adam optimizer for deep neural networks [C]// IEEE/ACM 26th International Symposium on Quality of Service . Banff: IEEE, 2018: 1-2.
|
25 |
ZHANG J, LIU G, DING D, et al. Transformer and upsampling-based point cloud compression [C]// ACM MM Workshops on Advances in Point Cloud Compression, Processing and Analysis. Lisbon: ACM, 2022: 33-39.
|
26 |
Google. Draco 3D data compression [EB/OL]. [2023-08-01]. https://github.com/google/draco.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|