计算机技术、通信技术 |
|
|
|
|
精度可控的边界表示模型网格生成 |
曾铮1( ),贾晓红1,*( ),辛士庆2,严冬明3,4 |
1. 中国科学院数学与系统科学研究院 系统科学研究所,北京 100190 2. 山东大学 计算机科学与技术学院,山东 青岛 250100 3. 中国科学院自动化研究所 多模态人工智能系统全国重点实验室,北京 100190 4. 清华大学 水沙科学与水利水电工程国家重点实验室,北京 100084 |
|
Precision controllable mesh generation for boundary representation model |
Zheng ZENG1( ),Xiaohong JIA1,*( ),Shiqing XIN2,Dongming YAN3,4 |
1. Institute of Systems Science, Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190, China 2. School of Computer Science and Technology, Shandong University, Qingdao 250100, China 3. State Key Laboratory of Multimodal Artificial Intelligence Systems, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China 4. State Key Laboratory of Hydroscience and Engineering, Tsinghua University, Beijing 100084, China |
引用本文:
曾铮,贾晓红,辛士庆,严冬明. 精度可控的边界表示模型网格生成[J]. 浙江大学学报(工学版), 2024, 58(2): 257-267.
Zheng ZENG,Xiaohong JIA,Shiqing XIN,Dongming YAN. Precision controllable mesh generation for boundary representation model. Journal of ZheJiang University (Engineering Science), 2024, 58(2): 257-267.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.02.004
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I2/257
|
1 |
Open Cascade SAS. Open cascade technology [EB/OL]. (2023-01-01)[2023-04-15]. https://www.opencascade.com/.
|
2 |
SCHÖBERL J NETGEN An advancing front 2D/3D-mesh generator based on abstract rules[J]. Computing and Visualization in Science, 1997, 1 (1): 41- 52
doi: 10.1007/s007910050004
|
3 |
GEUZAINE C, REMACLE J F Gmsh: a 3-D finite element mesh generator with built-in pre-and post-processing facilities[J]. International Journal for Numerical Methods in Engineering, 2009, 79 (11): 1309- 1331
doi: 10.1002/nme.2579
|
4 |
ATTENE M A lightweight approach to repairing digitized polygon meshes[J]. The Visual Computer, 2010, 26 (11): 1393- 1406
doi: 10.1007/s00371-010-0416-3
|
5 |
JU T Robust repair of polygonal models[J]. ACM Transactions on Graphics, 2004, 23 (3): 888- 895
doi: 10.1145/1015706.1015815
|
6 |
王骁, 雷娜, 罗钟铉 基于局部的全自动网格修复算法[J]. 计算机辅助设计与图形学学报, 2022, 34 (19179): 1391- 1401 WANG Xiao, LEI Na, LUO Zhongxuan An automatic surface-based mesh repairing algorithm[J]. Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (19179): 1391- 1401
|
7 |
CENTIN M, PEZZOTTI N, SIGNORONI A Poisson-driven seamless completion of triangular meshes[J]. Computer Aided Geometric Design, 2015, 35: 42- 55
|
8 |
ALLIEZ P, UCELLI G, GOTSMAN C, et al. Recent advances in remeshing of surfaces [M]// DE FLORIANI L, SPAGNUOLO M. Shape analysis and structuring . Berlin: Springer , 2008: 53-82.
|
9 |
BOTSCH M, KOBBELT L, PAULY M, et al. Polygon mesh processing [M]. Boca Raton: CRC Press, 2010: 85-150.
|
10 |
KHAN D, PLOPSKI A, FUJIMOTO Y, et al Surface remeshing: a systematic literature review of methods and research directions[J]. IEEE Transactions on Visualization and Computer Graphics, 2020, 28 (3): 1680- 1713
|
11 |
HARTMANN E A marching method for the triangulation of surfaces[J]. The Visual Computer, 1998, 14 (3): 95- 108
doi: 10.1007/s003710050126
|
12 |
CUILLIÉRE J An adaptive method for the automatic triangulation of 3D parametric surfaces[J]. Computer-Aided Design, 1998, 30 (2): 139- 149
doi: 10.1016/S0010-4485(97)00085-7
|
13 |
ZHONG Z, GUO X, WANG W, et al Particle-based anisotropic surface meshing[J]. ACM Transactions on Graphics, 2013, 32 (4): 1- 14
|
14 |
SHIMADA K, GOSSARD D C Automatic triangular mesh generation of trimmed parametric surfaces for finite element analysis[J]. Computer Aided Geometric Design, 1998, 15 (3): 199- 222
doi: 10.1016/S0167-8396(97)00037-X
|
15 |
PEYRÉ G, COHEN L. Surface segmentation using geodesic centroidal tessellation [C]// Proceedings of 2nd International Symposium on 3D Data Processing, Visualization and Transmission . Thessaloniki: IEEE, 2004: 995-1002.
|
16 |
VALETTE S, CHASSERY J M, PROST R Generic remeshing of 3D triangular meshes with metric-dependent discrete Voronoi diagrams[J]. IEEE Transactions on Visualization and Computer Graphics, 2008, 14 (2): 369- 381
doi: 10.1109/TVCG.2007.70430
|
17 |
YAN D M, LÉVY B, LIU Y, et al Isotropic remeshing with fast and exact computation of restricted Voronoi diagram[J]. Computer Graphics Forum, 2009, 28 (5): 1445- 1454
doi: 10.1111/j.1467-8659.2009.01521.x
|
18 |
DU Q, WANG D Anisotropic centroidal Voronoi tessellations and their applications[J]. SIAM Journal on Scientific Computing, 2005, 26 (3): 737- 761
doi: 10.1137/S1064827503428527
|
19 |
LABELLE F, SHEWCHUK J R. Anisotropic Voronoi diagrams and guaranteed-quality anisotropic mesh generation [C]// Proceedings of the 19th Annual Symposium on Computational Geometry . New York: ACM, 2003: 191- 200.
|
20 |
SHENG X, HIRSCH B E Triangulation of trimmed surfaces in parametric space[J]. Computer-Aided Design, 1992, 24 (8): 437- 444
doi: 10.1016/0010-4485(92)90011-X
|
21 |
GU X, YAU S T. Global conformal surface parameterization [C]// Proceedings of the 2003 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing . Goslar: ACM, 2003: 127-137.
|
22 |
LIU L, YE C, NI R, et al Progressive parameterizations[J]. ACM Transactions on Graphics, 2018, 37 (4): 1- 12
|
23 |
SU K, LEI N, CHEN W, et al Curvature adaptive surface remeshing by sampling normal cycle[J]. Computer-Aided Design, 2019, 111: 1- 12
doi: 10.1016/j.cad.2019.01.004
|
24 |
BÉCHET E, CUILLIERE J C, TROCHU F Generation of a finite element MESH from stereolithography (STL) files[J]. Computer-Aided Design, 2002, 34 (1): 1- 17
doi: 10.1016/S0010-4485(00)00146-9
|
25 |
AUBRY R, KARAMETE B K, MESTREAU E L, et al A three-dimensional parametric mesher with surface boundary-layer capability[J]. Journal of Computational Physics, 2014, 270: 161- 181
doi: 10.1016/j.jcp.2014.03.057
|
26 |
GUO J, DING F, JIA X, et al Automatic and high-quality surface mesh generation for CAD models[J]. Computer-Aided Design, 2019, 109: 49- 59
doi: 10.1016/j.cad.2018.12.005
|
27 |
尤磊, 申则宇, 张立强, 等 CAD 模型三角网格优化算 法[J]. 计算机辅助设计与图形学学报, 2019, 31 (6): 878- 885 YOU Lei, SHEN Zeyu, ZHANG Liqiang, et al A mesh optimization algorithm for CAD models[J]. Journal of Computer-Aided Design and Computer Graphics, 2019, 31 (6): 878- 885
doi: 10.3724/SP.J.1089.2019.17393
|
28 |
SHEWCHUK J R. What is a good linear element? interpolation, conditioning, and quality measures [C]// Proceedings of the International Meshing Roundtable . Ithaca: SIAM, 2002: 115-126.
|
29 |
FREY P J, BOROUCHAKI H Geometric surface mesh optimization[J]. Computing and Visualization in Science, 1998, 1 (3): 113- 121
doi: 10.1007/s007910050011
|
30 |
BOTSCH M, BOMMES D, VOGEL C, et al. GPU-based tolerance volumes for mesh processing [C]// Proceedings of the Pacific Conference on Computer Graphics and Applications . Goslar: IEEE, 2004: 237-243.
|
31 |
MANDAD M, COHEN-STEINER D, ALLIEZ P Isotopic approximation within a tolerance volume[J]. ACM Transactions on Graphics, 2015, 34 (4): 1- 12
|
32 |
WANG B, SCHNEIDER T, HU Y, et al Exact and efficient polyhedral envelope containment check[J]. ACM Transactions on Graphics, 2020, 39 (4): 114
|
33 |
HU K, YAN D M, BOMMES D, et al Error-bounded and feature preserving surface remeshing with minimal angle improvement[J]. IEEE Transactions on Visualization and Computer Graphics, 2016, 23 (12): 2560- 2573
|
34 |
YANG Y, ZHANG W X, LIU Y, et al Error-bounded compatible remeshing[J]. ACM Transactions on Graphics, 2020, 39 (4): 1- 15
|
35 |
ZHANG W X, WANG Q, GUO J P, et al Constrained remeshing using evolutionary vertex optimization[J]. Computer Graphics Forum, 2022, 41 (2): 237- 247
doi: 10.1111/cgf.14471
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|