Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (12): 2479-2488    DOI: 10.3785/j.issn.1008-973X.2024.12.007
计算机技术     
基于骨架线的地图建筑物形状分类方法
禄小敏1,2,3(),马犇1,2,3,闫浩文1,2,3,李蓬勃1,2,3
1. 兰州交通大学 测绘与地理信息学院,甘肃 兰州 730070
2. 地理国情监测技术应用国家地方联合工程研究中心,甘肃 兰州 730070
3. 甘肃省地理国情监测工程实验室,甘肃 兰州 730070
Shape classifying method of map building based on skeleton line
Xiaomin LU1,2,3(),Ben MA1,2,3,Haowen YAN1,2,3,Pengbo LI1,2,3
1. Faculty of Geomatics, Lanzhou Jiaotong University, Lanzhou 730070, China
2. National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring, Lanzhou 730070, China
3. Gansu Provincial Engineering Laboratory for National Geographic State Monitoring, Lanzhou 730070, China
 全文: PDF(3833 KB)   HTML
摘要:

基于模板匹配的建筑物形态识别方法容易受到局部特征干扰. 为了提高建筑物形态识别和分类的精度,在继承传统模板匹配方法优势的基础上,引入最小二乘模板、骨架线及特征向量构建建筑物形状分类模型. 通过构建建筑物最小二乘模板并提取其骨架线的方式克服建筑物细小凹陷与凸出对整体形态识别的影响;在此基础上,计算骨架线特征向量并利用其余弦相似度实现建筑物与模板的匹配,相似度最高的模板即被确定为建筑物形状分类结果. 为了验证模型的适用性和有效性,实验采用4540个建筑物数据进行分类验证. 结果表明,该模型分类精度较高,能有效解决局部特征对建筑物整体形状描述的干扰问题,为进一步的建筑物匹配及其综合评价操作打下基础.

关键词: 形状分类模板匹配骨架线特征向量余弦相似度    
Abstract:

The template-based matching method for building morphology recognition is prone to interference from local features. To improve the accuracy of building morphology recognition and classification, on the basis of the advantages of traditional template-based matching method, a building shape classification model was constructed by introducing least squares template, skeleton lines and feature vector. The impact of small depressions and protrusions was avoided in the method by constructing least squares templates and extracting skeleton lines. Based on that, the feature vectors of the building and the templates’ skeleton lines were calculated, the cosine similarity was introduced to calculate their similarity, and the template with the highest similarity was treated as the classification result for building shapes. Data of 4540 buildings were used for classification validation in the experiment, to verify the feasibility and effectiveness of the proposed method. Results show that the method can resolve the interference problem of local features on the overall shape description of the building, resulting in high classification accuracy. The method lays foundation for further building matching and generalization evaluation operations.

Key words: shape classification    template matching    skeleton line    feature vector    cosine similarity
收稿日期: 2024-01-07 出版日期: 2024-11-25
CLC:  P 28  
基金资助: 国家自然科学基金地区项目(42161066);国家自然科学基金重点项目(41930101);国家自然科学基金青年项目(41801395).
作者简介: 禄小敏(1982—),女,副教授,从事地图制图综合及空间关系研究. orcid.org/0000-0002-6206-251X. E-mail:xiaominlu08@mail.lzjtu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
禄小敏
马犇
闫浩文
李蓬勃

引用本文:

禄小敏,马犇,闫浩文,李蓬勃. 基于骨架线的地图建筑物形状分类方法[J]. 浙江大学学报(工学版), 2024, 58(12): 2479-2488.

Xiaomin LU,Ben MA,Haowen YAN,Pengbo LI. Shape classifying method of map building based on skeleton line. Journal of ZheJiang University (Engineering Science), 2024, 58(12): 2479-2488.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.12.007        https://www.zjujournals.com/eng/CN/Y2024/V58/I12/2479

图 1  建筑物多边形特征点
图 2  道格拉斯-普克算法中实际阈值与预测阈值的关系
图 3  建筑物多边形及其最小二乘模板
图 4  建筑物及其骨架线
图 5  11类建筑物典型形状模板及对应样本
图 6  模板的特征向量
图 7  特征向量生成示例
图 8  基于特征向量的建筑物模板初筛
图 9  待分类建筑物样本示例
图 10  建筑物和模板的余弦相似度
类型NeNcAc/%最多误匹配模板类型
“C”型50048096.0L
“H”型50047494.8π
“Z”型50046492.8Y
“Y”型50046492.8Z
“L”型50045591.0Z
“T”型50043186.2Y
矩形50041583.0Z
“F”型50040380.6T
“E”型50039772.8F
“十”型201680.0Z
“π”型201575.0T
表 1  建筑物模板匹配实验结果统计
图 11  “十”型建筑物及其Delaunay三角形
图 12  分类有误的“E”型建筑物及“E”型、“F”型模板
图 13  基于2种方法的部分建筑物与模板匹配结果对比
图 14  不规则“E”型建筑物识别对比
图 15  本研究方法与基于转角函数的方法的实验结果对比
图 16  基于转角函数的不规则建筑物形状分类过程
原始建筑物轮廓矢量转栅格化简最小二乘模版化简
表 2  建筑物轮廓化简结果对比
1 艾廷华, 帅赟, 李精忠 基于形状相似性识别的空间查询[J]. 测绘学报, 2009, 38 (4): 356- 362
AI Tinghua, SHUAI Yun, LI Jingzhong A spatial query based on shape similarity cognition[J]. Acta Geodaetica et Cartographica Sinica, 2009, 38 (4): 356- 362
doi: 10.3321/j.issn:1001-1595.2009.04.012
2 晏雄锋, 袁拓, 杨敏, 等 建筑物形状特征分析表达与自适应化简方法[J]. 测绘学报, 2022, 51 (2): 269- 278
YAN Xiongfeng, YUAN Tuo, YANG Min, et al An adaptive building simplification approach based on shape analysis and representation[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51 (2): 269- 278
doi: 10.11947/j.AGCS.2022.20210302
3 刘鹏程, 黄欣, 马宏然, 等 建筑物多边形高精度识别的傅里叶形状描述子神经网络方法[J]. 测绘学报, 2022, 51 (9): 1969- 1976
LIU Pengcheng, HUANG Xin, MA Hongran, et al Fourier descriptor-based neural method for high-precision shape recognition of building polygon[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51 (9): 1969- 1976
doi: 10.11947/j.AGCS.2022.20210730
4 RAINSFORD D, MACKANESS W. Template matching in support of generalization of rural buildings [C]// Advances in Spatial Data Handling . Berlin: Springer, 2002: 137−151.
5 WANG Z, LEE D. Building simplification based on pattern recognition and shape analysis [C]∥ Proceedings of the 9th International Symposium on Spatial Data Handling . Beijing: Springer, 2000: 58−72.
6 安晓亚 空间数据几何相似性度量理论方法与应用研究[J]. 测绘学报, 2013, 42 (1): 157
AN Xiaoya Research on theory, methods and applications of geometry similarity measurement for spatial data[J]. Acta Geodaetica et Cartographica Sinica, 2013, 42 (1): 157
7 刘鹏程. 形状识别在地图综合中的应用研究 [J]. 测绘学报, 2012, 41(2): 1.
LIU Pengcheng. Applications of shape recognition in map generalization [J]. Acta Geodaetica et Cartographica Sinica , 2021, 41(2): 1.
8 AI T, CHENG X, LIU P, et al A shape analysis and template matching of building features by the Fourier transform method[J]. Computers, Environment and Urban Systems, 2013, 41: 219- 233
doi: 10.1016/j.compenvurbsys.2013.07.002
9 YAN X, AI T, ZHANG X Template matching and simplification method for building features based on shape cognition[J]. International Journal of Geo-information, 2017, 6 (8): 1- 17
10 晏雄锋, 艾廷华, 杨敏 居民地要素化简的形状识别与模板匹配方法[J]. 测绘学报, 2016, 45 (7): 874- 882
YAN Xiongfeng, AI Tinghua, YANG Min A simplification of residential feature by the shape cognition and template matching method[J]. Acta Geodaetica et Cartographica Sinica, 2016, 45 (7): 874- 882
doi: 10.11947/j.AGCS.2016.20150162
11 刘鹏程, 艾廷华, 胡晋山, 等 基于原型模板形状匹配的建筑多边形化简[J]. 武汉大学学报: 信息科学版, 2010, 35 (11): 1369- 1372
LIU Pengcheng, AI Tinghua, HU Jinshan, et al Building-polygon simplification based on shape matching of prototype template[J]. Geomatics and Information Science of Wuhan University, 2010, 35 (11): 1369- 1372
12 晏雄锋, 艾廷华, 杨敏, 等 地图空间形状认知的自编码器深度学习方法[J]. 测绘学报, 2021, 50 (6): 757- 765
YAN Xiongfeng, AI Tinghua, YANG Min, et al Shape cognition in map space using deep auto-encoder learning[J]. Acta Geodaetica et Cartographica Sinica, 2021, 50 (6): 757- 765
doi: 10.11947/j.AGCS.2021.20210046
13 杜佳威, 武芳, 行瑞星, 等 几种具有编解码结构的深度学习模型在建筑物综合中的应用与比较[J]. 武汉大学学报: 信息科学版, 2022, 47 (7): 1052- 1062
DU Jiawei, WU Fang, XING Ruixing, et al Trial and comparison of some encoder decoder based deep learning models for automated generalization of buildings[J]. Geomatics and Information Science of Wuhan University, 2022, 47 (7): 1052- 1062
14 马磊. 基于机器学习的建筑物形状化简模型[D]. 兰州: 兰州交通大学, 2018.
Ma Lei. A simplification model for building shapes based on machine learning [D]. Lanzhou: Lanzhou Jiaotong University, 2018.
15 YAN X, AI T, YANG M, et al Graph convolutional autoencoder model for the shape coding and cognition of buildings in maps[J]. International Journal of Geographical Information Science, 2021, 35 (3): 490- 512
doi: 10.1080/13658816.2020.1768260
16 焦洋洋, 刘平芝, 刘爱龙, 等 AlexNet支持下的地图建筑物形状分类方法[J]. 地球信息科学学报, 2022, 24 (12): 2333- 2341
JIAO Yangyang, LIU Pingzhi, LIU Ailong, et al Map building shape classification method based on Alexnet[J]. Journal of Geo-information Science, 2022, 24 (12): 2333- 2341
doi: 10.12082/dqxxkx.2022.210396
17 于洋洋, 贺康杰, 武芳, 等 面状居民地形状分类的图卷积神经网络方法[J]. 测绘学报, 2022, 51 (11): 2390- 2402
YU Yangyang, HE Kangjie, WU Fang, et al Graph convolution neural network method for shape classification of areal settlements[J]. Acta Geodaetica et Cartographica Sinica, 2022, 51 (11): 2390- 2402
doi: 10.11947/j.AGCS.2022.20210134
18 韩晓霞, 崔浩, 孙钰珊 顾及曲线走向及局部面积特征的矢量数据压缩算法[J]. 北京测绘, 2017, (6): 6- 9
HAN Xiaoxia, CUI Hao, SUN Yushan The algorithm of vector data compression take into consideration of the curve trend and local aera feature[J]. Beijing Surveying and Mapping, 2017, (6): 6- 9
19 杜维, 艾廷华, 徐峥 一种组合优化的多边形化简方法[J]. 武汉大学学报: 信息科学版, 2004, (6): 548- 550
DU Wei, AI Tinghua, XU Zheng A polygon simplification method based on combinatorial optimization[J]. Geomatics and Information Science of Wuhan University, 2004, (6): 548- 550
20 BREIMAN L Random forest[J]. Machine Learning, 2001, 45: 5- 32
doi: 10.1023/A:1010933404324
21 顾海燕, 闫利, 李海涛, 等 基于随机森林的地理要素面向对象自动解译方法[J]. 武汉大学学报: 信息科学版, 2016, 41 (2): 228- 234
GU Haiyan, YAN Li, LI Haitao, et al An object-based automatic interpretation method for geographic features based on random forest machine learning[J]. Geomatics and Information Science of Wuhan University, 2016, 41 (2): 228- 234
22 王猛, 张新长, 王家耀, 等 结合随机森林面向对象的森林资源分类[J]. 测绘学报, 2020, 49 (2): 235- 244
WANG Meng, ZHANG Xinchang, WANG Jiayao, et al Forest resource classification based on random forest and object oriented method[J]. Acta Geodaetica et Cartographica Sinica, 2020, 49 (2): 235- 244
doi: 10.11947/j.AGCS.2020.20190272
23 刘鹏程, 艾廷华, 邓吉芳 基于最小二乘的建筑物多边形的化简与直角化[J]. 中国矿业大学学报, 2008, 37 (5): 699- 704
LIU Pengcheng, AI Tinghua, DENG Jifang Simplification and cartesianization of building-polygons based on least squares adjustment[J]. Journal of China University of Mining and Technology, 2008, 37 (5): 699- 704
doi: 10.3321/j.issn:1000-1964.2008.05.023
24 艾廷华, 郭仁忠 基于约束Delaunay结构的街道中轴线提取及网络模型建立[J]. 测绘学报, 2000, 29 (4): 348- 354
AI Tinghua, GUO Renzhong Extracting center-lines and building street network based on constrained delaunay triangulation[J]. Acta Geodaetica et Cartographica Sinica, 2000, 29 (4): 348- 354
doi: 10.3321/j.issn:1001-1595.2000.04.012
25 刘鹏程. 形状识别在地图综合中的应用研究[D]. 武汉: 武汉大学, 2009.
LIU Pengcheng. Applications of shape recognition in map generalization [D]. Wuhan: Wuhan University, 2009.
[1] 曾煌尧,李丹丹,马严,丛群. 园区网风险账号评估方法[J]. 浙江大学学报(工学版), 2020, 54(9): 1761-1767.
[2] 余煇,柴登峰. 基于长方形点过程的遥感图像汽车提取[J]. 浙江大学学报(工学版), 2019, 53(9): 1741-1748.
[3] 叶肖伟,张小明,倪一清,黄启远,樊可清. 基于机器视觉技术的桥梁挠度测试方法[J]. 浙江大学学报(工学版), 2014, 48(5): 813-819.
[4] 涂岳文, 陈杭, 付秀泉, 李顶立, 黄超, 汤亚伟, 叶树明. 基于心搏聚类的Holter运动伪差段快速识别算法[J]. J4, 2012, 46(6): 1148-1156.
[5] 李卓,陈健,蒋晓宁,曾宪庭,潘雪增. 基于多域特征的JPEG图像盲检测算法[J]. J4, 2011, 45(9): 1528-1538.
[6] 刘祖根 平玲娣 史烈 张宝军 潘雪增. 基于图像子块颜色复杂度的隐写分析[J]. J4, 2008, 42(7): 1150-1157.
[7] 平玲娣 刘祖根 史烈 孙康. 基于易变特征实现隐藏信息的盲检测[J]. J4, 2007, 41(3): 374-379.
[8] 刘祖根 平玲娣 史烈 潘雪增. 基于主元特征的隐写分析算法[J]. J4, 2007, 41(12): 1991-1996.