Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2119-2127    DOI: 10.3785/j.issn.1008-973X.2024.10.016
土木工程、交通工程     
基于机器学习算法的块石形状分类及土石混合体数值模拟
曾海英1(),叶沛楠1,金华辉2,刘京雨3,岑夺丰4,*()
1. 玉环市农业农村和水利局,浙江 台州 317600
2. 浙江广川工程咨询有限公司,浙江 杭州 310020
3. 河北工业大学 土木与交通学院,天津 300401
4. 宁波大学 岩石力学研究所,浙江 宁波 315211
Rock block shape classification and numerical simulation of soil-rock mixture based on machine learning algorithms
Haiying ZENG1(),Peinan YE1,Huahui JIN2,Jingyu LIU3,Duofeng CEN4,*()
1. Yuhuan Agriculture and Water Conservancy Bureau, Taizhou 317600, China
2. Zhejiang Guangchuan Engineering Consultation Limited Company, Hangzhou 310020, China
3. School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
4. Institute of Rock Mechanics, Ningbo University, Ningbo 315211, China
 全文: PDF(3047 KB)   HTML
摘要:

现有块石形状特征的数值模型或过于简化块石形状或未进行块石形状的频率统计,为此基于主成分分析算法(PCA)和K均值聚类算法,提出新的建模方法. 利用Matlab对土石混合体断面照片进行数字图像处理,得到块石轮廓样本;对块石轮廓进行形心原点化、长轴水平化、最大极径归一化等标准化处理,得到标准化后的块石轮廓向量. 分别采用PCA和K均值聚类算法对块石轮廓向量进行降维和聚类,对得到的分类块石形状进行频率统计. 建立考虑块石形状分类及频率、颗粒级配、块石倾角的土石混合体随机模型,进行双轴压缩数值模拟,分析塑性应变和应力-应变曲线特征. 在较高含石量和较大块石粒径情况下比较模型的变形和抗压强度,考虑块石形状的土石混合体模型与传统含多边形块石的土石混合体模型差异明显.

关键词: 土石混合体块石形状主成分分析算法(PCA)K均值聚类算法    
Abstract:

Existing numerical models of rock block shape characteristics either oversimplified the block shapes or did not carry out the statistics of the block shapes. A new modeling method was proposed based on the principal component analysis algorithm (PCA) and K-means clustering algorithm. Matlab programs were used to digitally process the cross-section photos of the soil-rock mixture to obtain the contour samples of rock blocks, and the standardization processings of rock block contour such as moving the centroid to the origin, rotating the long-axis to the horizontal-axis, and normalizing the polar radius were performed to obtain standardized silhouette vectors of rock blocks. The PCA was used to reduce the dimension of the contour vector of the rock blocks, and the K-means clustering algorithm was used to cluster the contour vector after the dimension reduction. The shapes of the rock blocks were classified and the frequencies of various types of rock blocks were counted. A random model of soil-rock mixture considering the shape classification and frequency, grain composition, and inclination was established. The biaxial compression numerical simulation was carried out, and the characteristics of the plastic strain and the stress-strain curves were analyzed. The models of the deformation and compression strength of the soil-rock mixture considering the rock block shape are significantly different from those of the traditional soil-rock mixture models with polygonal rock blocks, under the conditions of higher rock content and larger rock block size.

Key words: soil-rock mixture    rock block shape    principal component analysis algorithm(PCA)    K-means clustering algorithm
收稿日期: 2023-08-08 出版日期: 2024-09-27
CLC:  P 642.3  
通讯作者: 岑夺丰     E-mail: 617660521@qq.com;cdfschool@126.com
作者简介: 曾海英(1977—),男,高级工程师,从事水利工程运行管理和安全监测研究. orcid.org/0009-0008-5082-2172. E-mail:617660521@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
曾海英
叶沛楠
金华辉
刘京雨
岑夺丰

引用本文:

曾海英,叶沛楠,金华辉,刘京雨,岑夺丰. 基于机器学习算法的块石形状分类及土石混合体数值模拟[J]. 浙江大学学报(工学版), 2024, 58(10): 2119-2127.

Haiying ZENG,Peinan YE,Huahui JIN,Jingyu LIU,Duofeng CEN. Rock block shape classification and numerical simulation of soil-rock mixture based on machine learning algorithms. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2119-2127.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2119

图 1  块石轮廓提取
图 2  块石轮廓点坐标的采集
图 3  块石标准化处理后的示意图
图 4  标准化处理后的块石极径
图 5  标准化处理后的块石样本
图 6  二维向量降至一维向量的示意图
图 7  降至二维的块石轮廓向量分布
图 8  聚类数量与误差平方和的关系
类别rrb/%块石形状
116.3
216.3
320.8
423.3
523.3
表 1  块石形状分类结果
类别μb
11.582.302.081.921.701.722.32
21.971.711.661.861.901.871.95
31.621.221.351.151.691.591.391.421.14
41.571.591.361.411.781.011.381.411.771.59
51.101.091.321.191.071.331.321.161.211.35
表 2  块石的长短轴比
图 9  块石粒径频率直方图
图 10  块石倾角频率直方图
图 11  块石-边界位置关系示意图
图 12  点与多边形位置关系示意图
图 13  土石混合体模拟断面
图 14  Abaqus模型网格图
材料ρm/(g·cm?3E/MPaυφ/(°)c/kPa
块石2.601 1000.2361 125
土体1.90500.32042
表 3  模型中土、块石的物理力学参数
图 15  不同含石率的试件塑性应变云图
图 16  不同含石率的试件偏应力-轴向应变曲线
图 17  不同块石粒径级配的试件塑性应变云图
图 18  不同块石粒径级配的试件偏应力-轴向应变曲线
1 徐文杰, 张海洋 土石混合体研究现状及发展趋势[J]. 水利水电科技进展, 2013, 33 (1): 80- 88
XU Wenjie, ZHANG Haiyang Research status and development trend of soil-rock mixture[J]. Advances in Science and Technology of Water Resources, 2013, 33 (1): 80- 88
2 胡峰, 李志清, 胡瑞林, 等 基于大型直剪试验的土石混合体剪切带变形特征试验研究[J]. 岩石力学与工程学报, 2018, 37 (3): 766- 778
HU Feng, LI Zhiqing, HU Ruilin, et al Research on the deformation characteristics of shear band of soil-rock mixture based on large scale direct shear test[J]. Chinese Journal of Rock Mechanics and Engineering, 2018, 37 (3): 766- 778
3 XU W, XU Q, HU R Study on the shear strength of soil-rock mixture by large scale direct shear test[J]. International Journal of Rock Mechanics and Mining Sciences, 2011, 48 (8): 1235- 1247
doi: 10.1016/j.ijrmms.2011.09.018
4 李晓, 廖秋林, 赫建明, 等 土石混合体力学特性的原位试验研究[J]. 岩石力学与工程学报, 2007, 26 (12): 2377- 2384
LI Xiao, LIAO Qiulin, HE Jianming, et al Study on in-situ tests of mechanical characteristics on soil-rock aggregate[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26 (12): 2377- 2384
doi: 10.3321/j.issn:1000-6915.2007.12.001
5 CEN D, HUANG D, REN F Shear deformation and strength of the interphase between the soil-rock mixture and the benched bedrock slope surface[J]. Acta Geotechnica, 2017, 12 (2): 391- 413
doi: 10.1007/s11440-016-0468-2
6 涂义亮, 刘新荣, 任青阳, 等 含石量和颗粒破碎对土石混合料强度的影响研究[J]. 岩土力学, 2020, 41 (12): 3919- 3928
TU Yiliang, LIU Xinrong, REN Qingyang, et al Effects of rock contents and particle breakage on strength characteristics of soil-rock aggregate[J]. Rock and Soil Mechanics, 2020, 41 (12): 3919- 3928
7 涂义亮, 李军, 柴贺军, 等 剪切作用下土石混合料的颗粒破碎演化规律[J]. 铁道工程学报, 2022, 39 (3): 19- 25
TU Yiliang, LI Jun, CHAI Hejun, et al Evolution of particle breakage of soil-rock mixture under shearing[J]. Journal of Railway Engineering Society, 2022, 39 (3): 19- 25
doi: 10.3969/j.issn.1006-2106.2022.03.004
8 油新华. 土石混合体的随机结构模型及其应用研究[D]. 北京: 北方交通大学, 2001.
YOU Xinhua. Stochastic structural model of the earth-rock aggregate and its application [D]. Beijing: Northern Jiaotong University, 2001.
9 宋来忠, 沈涛, 彭刚, 等 土石混合体二维细观结构的模拟方法研究[J]. 岩石力学与工程学报, 2014, 33 (7): 1488- 1495
SONG Laizhong, SHEN Tao, PENG Gang, et al Two dimensional mesoscale simulation of soil-rock mixture[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33 (7): 1488- 1495
10 XU W, YUE Z, HU R Study on the mesostructure and mesomechanical characteristics of the soil-rock mixture using digital image processing based finite element method[J]. International Journal of Rock Mechanics and Mining Sciences, 2008, 45 (5): 749- 762
doi: 10.1016/j.ijrmms.2007.09.003
11 赵鑫曜, 陈建功, 张海权, 等 基于块石形状数据库的土石混合体模型随机生成方法[J]. 岩土力学, 2018, 39 (12): 4691- 4697
ZHAO Xinyao, CHEN Jiangong, ZHANG Haiquan, et al Random generation of soil-rock mixture models by rock shape database using digital imaging technology[J]. Rock and Soil Mechanics, 2018, 39 (12): 4691- 4697
12 ZHANG W, HAN L, WANG Z, et al Generation of 3D geotechnical particles using random angular bend algorithm[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2023, 47 (8): 1313- 1330
doi: 10.1002/nag.3515
13 WANG Z, THOMAS B, ZHANG W, et al A novel random angular bend (RAB) algorithm and DEM modeling of thermal cracking responses of sandstone[J]. Geomechanics for Energy and the Environment, 2022, 32: 100335
doi: 10.1016/j.gete.2022.100335
14 PHOON K, ZHANG W Future of machine learning in geotechnics[J]. Georisk, 2023, 17 (1): 7- 22
15 ZHANG W, GU X, TANG L, et al Application of machine learning, deep learning and optimization algorithms in geoengineering and geoscience: comprehensive review and future challenge[J]. Gondwana Research, 2022, 109: 1- 17
doi: 10.1016/j.gr.2022.03.015
16 ZHANG W, LI H, LI Y, et al Application of deep learning algorithms in geotechnical engineering: a short critical review[J]. Artificial Intelligence Review, 2021, 54: 5633- 5673
doi: 10.1007/s10462-021-09967-1
17 崔丹丹. K-means聚类算法的研究与改进[D]. 合肥: 安徽大学, 2012.
CUI Dandan. Research and improvement of the K-means clustering algorithm [D]. Hefei: Anhui University, 2012.
18 徐文杰, 王玉杰, 陈祖煜, 等. 基于数字图像技术的土石混合体边坡稳定性分析[J]. 岩土力学, 2008, 28(增1): 341−346.
XU Wenjie, WANG Yujie, CHEN Zuyu, et al. Stability analysis of soil-rock mixed slope based on digital image technology [J]. Rock and Soil Mechanics , 2008, 28(Suppl. 1): 341–346.
19 马昊, 黄达, 肖衡林, 等 江北机场高填方夯后碎块石土剪切力学性质研究[J]. 水文地质工程地质, 2019, 46 (3): 88- 94
MA Hao, HUANG Da, XIAO Henglin, et al A study of the shear mechanical properties of high-filled gravel-block soil after dynamic compaction near the Jiangbei airport[J]. Hydrogeology and Engineering Geology, 2019, 46 (3): 88- 94
20 徐文杰, 胡瑞林, 岳中崎 土-石混合体随机细观结构生成系统的研发及其细观结构力学数值试验研究[J]. 岩石力学与工程学报, 2009, 28 (8): 1652- 1665
XU Wenjie, HU Ruilin, YUE Z Q Development of random mesostructure generating system of soil-rock mixture and study of its mesostructural mechanics based on numerical test[J]. Chinese Journal of Rock Mechanics and Engineering, 2009, 28 (8): 1652- 1665
doi: 10.3321/j.issn:1000-6915.2009.08.017
21 MEDLEY E W. The engineering characterization of mélanges and similar block-in-matrix rocks (bimrocks) [D]. Berkeley: University of California at Berkeley, 1994.
22 喻江武, 苟志龙, 雷瑜, 等 基于傅里叶逆变换的土石混合体模型生成研究[J]. 水利水电技术, 2019, 50 (4): 7- 15
YU Jiangwu, GOU Zhilong, LEI Yu, et al Inverse Fourier transform-based study on generating model of soil-rock mixture[J]. Water Resources and Hydropower Engineering, 2019, 50 (4): 7- 15
23 丁巍, 楚锡华, 常江芳 横观各向同性岩土材料的应变局部化分析[J]. 地震工程学报, 2017, 39 (3): 481- 487
DING Wei, CHU Xihua, CHANG Jiangfang Numerical analysis of strain localization for transversely isotropic geomaterials[J]. China Earthquake Engineering Journal, 2017, 39 (3): 481- 487
doi: 10.3969/j.issn.1000-0844.2017.03.0481
[1] 王硕朋,杨鹏,孙昊,刘迈. 两级参考点匹配位置指纹声源定位方法[J]. 浙江大学学报(工学版), 2019, 53(6): 1198-1204.
[2] 章涵,胡新丽,吴爽爽. 基于傅里叶近似法的S-RM细观损伤过程研究[J]. 浙江大学学报(工学版), 2019, 53(10): 1955-1965.
[3] 王强, 胡新丽, 徐迎, 周昌, 徐楚. 软岩土石混合体的击实特性与细观机理研究[J]. 浙江大学学报(工学版), 2018, 52(12): 2295-2305.