Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2111-2118    DOI: 10.3785/j.issn.1008-973X.2024.10.015
机械工程、能源工程     
凹坑曲率对近壁单空泡溃灭动力学特性的影响
韩伟(),郝英剑,李仁年,任嘉乐,黄心愿
兰州理工大学 能源与动力工程学院,甘肃 兰州 730050
Effect of pit curvature on kinetic properties of near-wall single vacuole collapse
Wei HAN(),Yingjian HAO,Rennian LI,Jiale REN,Xinyuan HUANG
College of Energy and Power Engineering, Lanzhou University of Technology, Lanzhou 730050, China
 全文: PDF(1752 KB)   HTML
摘要:

空蚀导致流体机械壁面出现凹坑,影响流体机械壁面周围的流场,使附近的空泡溃灭过程复杂. 基于欧拉方法模拟凹坑壁面附近空泡溃灭过程,分析球形空泡在不同壁面曲率下的动力学特性. 结果表明,空泡溃灭时间与凹坑相对曲率呈指数函数关系,与空泡近壁系数呈线性关系且单调递减;空泡射流马赫数与凹坑相对曲率呈线性关系且单调递减,与空泡近壁系数呈线性关系且单调递增;冲击载荷与空泡溃灭时间呈二次函数关系且单调递减,与凹坑相对曲率和空泡近壁系数呈线性关系且单调递减.

关键词: 空泡动力学凹坑相对曲率射流速度冲击载荷空泡溃灭    
Abstract:

Cavitation erosion will lead to pits with different curvatures on the wall of fluid machinery, which will affect the flow field around the wall of fluid machinery and make the collapse process of the nearby vacuole complex. The process of vacuole collapse near a pit wall was simulated based on the Euler-Euler method, and the dynamic characteristics of the spherical vacuole under different wall curvatures were analyzed. Results show that the vacuole collapse time increases exponentially with the relative pit curvature and decreases monotonically with the near-wall coefficient of the vacuole in a linear function, while the Mach number of the vacuole jet decreases monotonically with the relative pit curvature and increases monotonically with the near-wall coefficient of the vacuole in a linear function. The impact load decreases monotonically with the vacuole collapse time in a quadratic function, and decreases monotonically with the relative pit curvature and the near-wall coefficient of the vacuole in a linear function.

Key words: vacuole dynamics    relative pit curvature    jet velocity    impact load    vacuole collapse
收稿日期: 2023-08-08 出版日期: 2024-09-27
CLC:  TK 72  
基金资助: 国家自然科学基金资助项目(52179086,52269022);景泰川电力灌溉工程大型梯级泵站改造关键技术研究.
作者简介: 韩伟(1977—),男,教授,从事流体机械及其多相流理论研究. orcid.org/0000-0001-8608-6519. E-mail:hanwei@lut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
韩伟
郝英剑
李仁年
任嘉乐
黄心愿

引用本文:

韩伟,郝英剑,李仁年,任嘉乐,黄心愿. 凹坑曲率对近壁单空泡溃灭动力学特性的影响[J]. 浙江大学学报(工学版), 2024, 58(10): 2111-2118.

Wei HAN,Yingjian HAO,Rennian LI,Jiale REN,Xinyuan HUANG. Effect of pit curvature on kinetic properties of near-wall single vacuole collapse. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2111-2118.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.015        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2111

图 1  不同凹坑相对曲率下次Bjerknes力随空泡溃灭过程的变化
图 2  不同凹坑相对曲率下阻力随空泡溃灭过程的变化
图 3  壁面参数示意图
Rs/mmξγRs/mmξγ
00.42.500.41.2
5.000.20.72.000.51.5
3.330.31.01.670.62.0
表 1  单空泡性能特性参数
图 4  凹坑壁面示意图
图 5  计算域和网格划分示意图
图 6  不同网格方案下空泡半径随时间的演化
图 7  空泡形态演变的实验及数值模拟图(ξ=0.3, γ=1.5)
图 8  不同凹坑相对曲率下的空泡溃灭时间
图 9  不同凹坑相对曲率下射流对空泡形态的影响(τ=5.95)
图 10  不同凹坑相对曲率的射流速度(τ=5.95)
图 11  壁面中心压力冲击载荷
图 12  壁面中心冲击载荷的时间历程(ξ=0.5, γ=1.2)
图 13  壁面附近压力波的传播过程(ξ=0.5, γ=1.2)
1 SUN Y, DU Y, YAO Z, et al The effect of surface geometry of solid wall on the collapse of a cavitation bubble[J]. Journal of Fluids Engineering, 2022, 144 (7): 071402
doi: 10.1115/1.4053350
2 米建东. 单空泡溃灭过程的动力学特性研究[D]. 兰州: 兰州理工大学, 2022.
MI Jiandong. A research of single bubble of dynamics properties for the collapse process [D]. Lanzhou: Lanzhou University of Technology, 2022.
3 王效贵, 罗冲, 顾桢标 固壁面附近空化泡溃灭过程的数值模拟[J]. 浙江工业大学学报, 2015, 43 (5): 512- 516
WANG Xiaogui, LUO Chong, GU Zhenbiao Collapse simulation of a cavitation bubble near a rigid boundary[J]. Journal of Zhejiang University of Technology, 2015, 43 (5): 512- 516
doi: 10.3969/j.issn.1006-4303.2015.05.008
4 李世民, 张阿漫, 崔璞 刚性壁面附近气泡和自由面的耦合效应研究[J]. 空气动力学学报, 2020, 38 (4): 796- 806
LI Shimin, ZHANG Aman, CUI Pu Study on the interaction between the bobble and free surface close to a rigid wall[J]. Acta Aerodynamica Sinica, 2020, 38 (4): 796- 806
doi: 10.7638/kqdlxxb-2020.0060
5 ZHANG A M, WANG S P, WU G X Simulation of bubble motion in a compressible liquid based on the three dimensional wave equation[J]. Engineering Analysis with Boundary Elements, 2013, 37 (9): 1179- 1188
6 ZHANG A M, LI S M, CUI P, et al A unified theory for bubble dynamics[J]. Physics of Fluids, 2023, 35: 033323
7 AGANIN A A, ILGAMOV M A, KOSOLAPOVA L A, et al Dynamics of a cavitation bubble near a solid wall[J]. Thermophysics and Aeromechanics, 2016, 23: 211- 220
doi: 10.1134/S0869864316020074
8 YANG Y X, WANG Q X, KEAT T S Dynamic features of a laser-induced cavitation bubble near a solid boundary[J]. Ultrasonics Sonochemistry, 2013, 20 (4): 1098- 1103
doi: 10.1016/j.ultsonch.2013.01.010
9 CUI P, ZHANG A, WANG S, et al Experimental investigation of bubble dynamics near the bilge with a circular opening[J]. Applied Ocean Research, 2013, 41: 65- 75
doi: 10.1016/j.apor.2013.03.002
10 KIM D, KIM D Underwater bubble collapse on a ridge-patterned structure[J]. Physics of Fluids, 2020, 32 (5): 053312
doi: 10.1063/5.0006372
11 MA C, SHI D, CHEN Y, et al Experimental research on the influence of different curved rigid boundaries on electric spark bubbles[J]. Materials, 2020, 13 (18): 3941
doi: 10.3390/ma13183941
12 AZIZ I A, MANMI K M A, SAEED R K, et al Modeling three dimensional gas bubble dynamics between two curved rigid plates using boundary integral method[J]. Engineering Analysis with Boundary Elements, 2019, 109: 19- 31
doi: 10.1016/j.enganabound.2019.09.008
13 MANMI K M A, AZIZ I A, ARJUNAN A, et al Three-dimensional oscillation of an acoustic microbubble between two rigid curved plates[J]. Journal of Hydrodynamics, 2021, 33: 1019- 1034
doi: 10.1007/s42241-021-0090-0
14 KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen [D]. Göttingen: University of Göttingen, 2008.
KRÖNINGER D A. Particle-tracking-velocimetry-messungen an kollabierenden kavitationsblasen [D]. Göttingen: University of Göttingen, 2008. KRÖNINGER D A. Application of particle tracking velocimetry in vacuole collapse [D]. Göttingen: University of Göttingen, 2008.
15 布伦南. 空化与空泡动力学[M]. 王勇, 潘中永, 译. 镇江: 江苏大学出版社, 2013: 3–12.
16 张马骏, 陈鑫 单个蒸汽气泡溃灭过程的边壁效应数值研究[J]. 上海交通大学学报, 2014, 48 (12): 1766- 1771
ZHANG Majun, CHEN Xin Numerical study of boundary effect during the collapse of single vapor bubble[J]. Journal of Shanghai Jiao Tong University, 2014, 48 (12): 1766- 1771
17 NGUYEN V T, PHAN T H, DUY T N, et al Modeling of the bubble collapse with water jets and pressure loads using a geometrical volume of fluid based simulation method[J]. International Journal of Multiphase Flow, 2022, 152: 104103
doi: 10.1016/j.ijmultiphaseflow.2022.104103
18 METTIN R, AKHATOV I, PARLITZ U, et al Bjerknes forces between small cavitation bubbles in a strong acoustic field[J]. Physical Review E, 1997, 56 (3): 2924- 2931
doi: 10.1103/PhysRevE.56.2924
19 MOO J G S, MAYORGA-MARTINEZ C C, WANG H, et al Bjerknes forces in motion: long-range translational motion and chiral directionality switching in bubble-propelled micromotors via an ultrasonic pathway[J]. Advanced Functional Materials, 2018, 28 (25): 1702618
doi: 10.1002/adfm.201702618
[1] 殷红,石咏荷,彭珍瑞,王增辉. 修正-联合正则化的冲击载荷识别与响应重构[J]. 浙江大学学报(工学版), 2024, 58(5): 1029-1039.
[2] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.
[3] 欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.