Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (5): 1029-1039    DOI: 10.3785/j.issn.1008-973X.2024.05.016
机械工程     
修正-联合正则化的冲击载荷识别与响应重构
殷红1(),石咏荷1,彭珍瑞1,*(),王增辉2
1. 兰州交通大学 机电工程学院,甘肃 兰州 730070
2. 西安交通大学 机械工程学院,陕西 西安 710049
Impact load identification and response reconstruction based on updating-combination regularization
Hong YIN1(),Yonghe SHI1,Zhenrui PENG1,*(),Zenghui WANG2
1. School of Mechanical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
2. School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China
 全文: PDF(2579 KB)   HTML
摘要:

针对传统结构响应重构中正则化方法对冲击载荷峰值识别精度低、非加载区识别结果振荡且识别精度易受噪声干扰等问题,提出基于修正-联合正则化的冲击载荷识别与结构响应重构方法. 基于状态空间模型,推导冲击载荷及结构响应的重构方程. 对测量响应降噪,利用降噪后响应与识别响应的差值修正L2正则化解. 联合L1正则化解的稀疏性优势,在保证冲击载荷非加载区域识别稳定的同时,获得更高精度的峰值识别结果,实现结构动态响应的重构. 通过数值和实验案例验证了所提方法的有效性,对比了传递矩阵法和粒子滤波法的响应重构效果. 结果表明,所提方法具有良好的抗噪性,能够较准确地识别冲击载荷,有效地重构结构动态响应.

关键词: 响应重构冲击载荷正则化传递矩阵粒子滤波    
Abstract:

An impact load identification and structural response reconstruction method based on the updating-combination regularization was proposed aiming at the problems of low accuracy in identifying peak impact loads, oscillation in identifying non loading areas, and susceptibility to noise interference in traditional regularization methods for structural response reconstruction. The reconstruction equations for the impact load and structure response were derived based on the state space model. The difference between the denoised response and the identification response was used to update the L2 regularization solution. Then higher accuracy peak identification results were obtained combining with the L1 regularization solution that had sparsity advantage while ensuring the stability of the identification of impact load in unloaded region, which realized the reconstruction of structural dynamic responses. The proposed method was verified through numerical and experimental cases, and the effect of response reconstruction based on the transfer matrix method and the particle filter method was compared. Results show that the proposed method has good anti-noise performance. The method can accurately recognize the impact load, and effectively reconstruct the dynamic response of the structure.

Key words: response reconstruction    impact load    regularization    transfer matrix    particle filter
收稿日期: 2022-11-30 出版日期: 2024-04-26
CLC:  O 327  
基金资助: 国家自然科学基金资助项目(62161018);甘肃省“创新之星”资助项目(2022CXZX-569).
通讯作者: 彭珍瑞     E-mail: yinhong@mail.lzjtu.cn;pzrui@163.com
作者简介: 殷红(1978—),女,教授,博士,从事结构动力学、模态分析的研究. orcid.org/0000-0003-4934-0228. E-mail:yinhong@mail.lzjtu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
殷红
石咏荷
彭珍瑞
王增辉

引用本文:

殷红,石咏荷,彭珍瑞,王增辉. 修正-联合正则化的冲击载荷识别与响应重构[J]. 浙江大学学报(工学版), 2024, 58(5): 1029-1039.

Hong YIN,Yonghe SHI,Zhenrui PENG,Zenghui WANG. Impact load identification and response reconstruction based on updating-combination regularization. Journal of ZheJiang University (Engineering Science), 2024, 58(5): 1029-1039.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.05.016        https://www.zjujournals.com/eng/CN/Y2024/V58/I5/1029

图 1  载荷识别情况
图 2  载荷识别与响应重构的流程图
图 3  轮对的有限元模型
图 4  Picard图
图 5  GCV函数图
图 6  不同正则化方法下的冲击载荷识别结果
噪声因子RPEf
L2正则化L1正则化Luc正则化
0.0311.4010.284.45
0.0513.1911.403.60
0.1017.3116.533.65
0.3026.6331.087.86
表 1  不同噪声下的载荷识别误差
图 7  D、E节点的响应重构结果
图 8  不同正则化方法的响应重构误差
重构方法正则化方法RPEY
D节点
速度
D节点
加速度
E节点
速度
E节点
加速度
传递
矩阵法
L26.158.126.018.14
L14.4610.044.3510.05
Luc0.901.440.881.44
粒子
滤波法
L26.158.126.018.13
L14.4710.044.3510.05
Luc0.901.450.891.45
表 2  不同重构方法下的重构误差
图 9  外伸梁
图 10  外伸梁模态试验的框架图
图 11  Picard图
图 12  GCV函数图
图 13  不同正则化方法下的冲击载荷识别结果
图 14  响应重构结果
重构方法正则化方法RPEY
第8节点加速度第17节点加速度
传递矩阵法L217.3417.47
L114.6714.37
Luc17.5911.72
粒子滤波法L24.935.61
L15.865.87
Luc17.398.02
表 3  不同正则化方法下的重构误差对比
重构方法正则化方法RPEY
第8节点加速度第17节点加速度
传递矩阵法L214.9317.89
L112.4315.15
Luc9.158.61
表 4  不考虑模型误差下不同正则化方法的重构误差对比
1 苏永振. 航空材料结构低速冲击健康监测研究[D]. 南京: 南京航空航天大学, 2010.
SU Yongzhen. Research on low velocity impact health monitoring methods for aeronautical materials structures [D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2010.
2 GUO J, HE J X Dynamic response analysis of ship-bridge collisions experiment[J]. Journal of Zhejiang University: Science A, 2020, 21 (7): 525- 534
doi: 10.1631/jzus.A1900382
3 豆硕, 刘志明, 王文静, 等 基于冲击响应谱高速列车设备冲击环境特性分析[J]. 中南大学学报:自然科学版, 2022, 53 (5): 1843- 1854
DOU Shuo, LIU Zhiming, WANG Wenjing, et al Analysis of shock environment characteristics of high-speed train equipment based on shock response spectrum[J]. Journal of Central South University: Science and Technology, 2022, 53 (5): 1843- 1854
4 LIN M X, GUO S J, HE Shun, et al Structure health monitoring of a composite wing based on flight load and strain data using deep learning method[J]. Composite Structures, 2022, 286: 115305
doi: 10.1016/j.compstruct.2022.115305
5 ZHANG C W, MOUSAVI A A, MASRI S F, et al Vibration feature extraction using signal processing techniques for structural health monitoring: a review[J]. Mechanical Systems and Signal Processing, 2022, 177: 109175
doi: 10.1016/j.ymssp.2022.109175
6 房芳, 郑辉, 汪玉, 等 机械结构健康监测综述[J]. 机械工程学报, 2021, 57 (16): 269- 292
FANG Fang, ZHENG Hui, WANG Yu, et al Mechanical structural health monitoring: a review[J]. Journal of Mechanical Engineering, 2021, 57 (16): 269- 292
doi: 10.3901/JME.2021.16.269
7 邱雨晴, 王磊, 王晓宇, 等 基于改进函数拟合法的冲击载荷识别研究[J]. 机械工程学报, 2022, 58 (3): 157- 166
QIU Yuqing, WANG Lei, WANG Xiaoyu, et al Research on impact force reconstruction based on improved function fitting method[J]. Journal of Mechanical Engineering, 2022, 58 (3): 157- 166
doi: 10.3901/JME.2022.03.157
8 LIU R X, DOBRIBAN E, HOU Z C, et al Dynamic load identification for mechanical systems: a review[J]. Archives of Computational Methods in Engineering, 2022, 29 (2): 831- 863
doi: 10.1007/s11831-021-09594-7
9 SUN L M, LI Y X, ZHU W, et al Structural response reconstruction in physical coordinate from deficient measurements[J]. Engineering Structures, 2020, 212: 110484
doi: 10.1016/j.engstruct.2020.110484
10 ZHU Z M, ZHU S Y, WANG Y W, et al Structural dynamic response reconstruction with multi-type sensors, unknown input, and rank deficient feedthrough matrix[J]. Mechanical Systems and Signal Processing, 2023, 187: 109935
doi: 10.1016/j.ymssp.2022.109935
11 YANG J S, FU Z Y, ZOU Y F, et al A response reconstruction method based on empirical mode decomposition and modal synthesis method[J]. Mechanical Systems and Signal Processing, 2023, 184: 109716
doi: 10.1016/j.ymssp.2022.109716
12 邹云峰, 付正亿, 何旭辉, 等 基于经验模态分解和模型缩聚的动力响应重构方法研究[J]. 工程力学, 2022, 39 (2): 67- 75
ZOU Yunfeng, FU Zhengyi, HE Xuhui, et al Dynamic response reconstruction method based on empirical mode decomposition and model condensation[J]. Engineering Mechanics, 2022, 39 (2): 67- 75
13 HE J J, GUAN X F, LIU Y M Structural response reconstruction based on empirical mode decomposition in time domain[J]. Mechanical Systems and Signal Processing, 2012, 28: 348- 366
doi: 10.1016/j.ymssp.2011.12.010
14 RIBEIRO A M R, SILVA J M M, MAIA N M M On the generalisation of the transmissibility concept[J]. Mechanical Systems and Signal Processing, 2000, 14 (1): 29- 35
doi: 10.1006/mssp.1999.1268
15 LAW S S, LI J, DING Y Structural response reconstruction with transmissibility concept in frequency domain[J]. Mechanical Systems and Signal Processing, 2011, 25 (3): 952- 968
doi: 10.1016/j.ymssp.2010.10.001
16 毛羚, 李书进, 张洲 未知输入下基于响应重构的结构损伤识别[J]. 土木工程与管理学报, 2018, 35 (3): 87- 95
MAO Ling, LI Shujin, ZHANG Zhou Structural damage identification based on response reconstruction under unknown input[J]. Journal of Civil Engineering and Management, 2018, 35 (3): 87- 95
17 张笑华, 任伟新, 方圣恩 两种传感器的位置优化及结构多种响应重构[J]. 振动与冲击, 2014, 33 (18): 26- 30
ZHANG Xiaohua, REN Weixin, FANG Shengen Location optimization of dual-type sensors for multi-kind structural response reconstruction[J]. Journal of Sound and Vibration, 2014, 33 (18): 26- 30
18 ZHANG X H, ZHU Z M, YUAN G K, et al Adaptive mode selection integrating Kalman filter for dynamic response reconstruction[J]. Journal of Sound and Vibration, 2021, 515: 116497
doi: 10.1016/j.jsv.2021.116497
19 史鹏程, 彭珍瑞, 董康立 基于有限测量信息的两步响应重构方法[J]. 振动与冲击, 2022, 41 (11): 291- 297
SHI Pengcheng, PENG Zhenrui, DONG Kangli Two-step response reconstruction method based on limited measured information[J]. Journal of Vibration and Shock, 2022, 41 (11): 291- 297
20 崔洪宇, 胡大士, 孔帅, 等 基于正则化方法的雪龙号破冰船冰载荷反演的研究[J]. 中国造船, 2020, 61 (1): 109- 119
CUI Hongyu, HU Dashi, KONG Shuai, et al Study on inversion of ice load for Xue Long icebreaker based on regularization method[J]. Shipbuilding of China, 2020, 61 (1): 109- 119
21 乔百杰, 陈雪峰, 刘金鑫, 等 机械结构冲击载荷稀疏识别方法研究[J]. 机械工程学报, 2019, 55 (3): 81- 89
QIAO Baijie, CHEN Xuefeng, LIU Jinxin, et al Sparse identification of impact force acting on mechanical structures[J]. Journal of Mechanical Engineering, 2019, 55 (3): 81- 89
doi: 10.3901/JME.2019.03.081
22 SHI Y H, YIN H, PENG Z R, et al Structural response reconstruction based on the information fusion of multi-source particle filters[J]. Journal of Mechanical Science and Technology, 2023, 37 (2): 631- 641
doi: 10.1007/s12206-023-0108-3
23 马超, 华宏星 一种基于新的正则化技术的冲击载荷识别法[J]. 振动与冲击, 2015, 34 (12): 164- 168
MA Chao, HUA Hongxing Impact force identification based on improved regularization technique[J]. Journal of Vibration and Shock, 2015, 34 (12): 164- 168
24 常晓通, 闫云聚, 刘鎏, 等 基于Green函数和正则化的动态载荷识别方法[J]. 振动, 测试与诊断, 2014, 34 (1): 124- 129
CHANG Xiaotong, YAN Yunju, LIU Liu, et al Applications of regulation method in dynamic load identification[J]. Journal of Vibration, Measurement and Diagnosis, 2014, 34 (1): 124- 129
25 HANSEN P C. The L-curve and its use in the numerical treatment of inverse problems [M]//JOHNSTON P. Computational Inverse Problems in Electrocardiology . Southampton: WIT Press, 2001: 119-142.
26 MAO Y M, GUO X L, ZHAO Y A state space force identification method based on Markov parameters precise computation and regularization technique[J]. Journal of Sound and Vibration, 2010, 329 (15): 3008- 3019
doi: 10.1016/j.jsv.2010.02.012
27 LIU J, LI B A novel strategy for response and force reconstruction under impact excitation[J]. Journal of Mechanical Science and Technology, 2018, 32 (8): 3581- 3596
doi: 10.1007/s12206-018-0709-4
28 FIGUEIREDO M A T, NOWAK R D, WRIGHT S Gradient projection for sparse reconstruction: application to compressed sensing and other inverse problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007, 1 (4): 586- 597
doi: 10.1109/JSTSP.2007.910281
29 DONOHO D L, TSAIG Y, DRORI I, et al Sparse solution of underdetermined systems of linear equations by stagewise orthogonal matching pursuit[J]. IEEE Transactions on Information Theory, 2012, 58 (2): 1094- 1121
doi: 10.1109/TIT.2011.2173241
30 DAUBECHIES I, DEFRISE M, MOL C An iterative thresholding algorithm for linear inverse problems with a sparsity constrains[J]. Communications on Pure and Applied Mathematics, 2004, 57 (11): 1413- 1541
doi: 10.1002/cpa.20042
31 熊春宝, 于丽娜, 常翔宇 基于EEMD-小波阈值去噪的桥梁结构模态参数识别[J]. 天津大学学报:自然科学与工程技术版, 2020, 53 (4): 378- 385
XIONG Chunbao, YU Lina, CHANG Xiangyu Modal parameter identification of bridge structures based on EEMD-wavelet threshold denoising[J]. Journal of Tianjin University: Science and Technology, 2020, 53 (4): 378- 385
32 赵永翔, 高庆, 张斌, 等 轨道车辆轮对的关键力学问题及研究进展[J]. 固体力学学报, 2010, 31 (6): 716- 730
ZHAO Yongxiang, GAO Qing, ZHANG Bin, et al Key solid mechanics issues and research progresses for railway vehicle wheelset[J]. Chinese Journal of Solid Mechanics, 2010, 31 (6): 716- 730
33 谭祥军. 从这里学NVH: 噪声、振动、模态分析的入门与进阶[M]. 北京: 机械工业出版社, 2018.
[1] 谭婷芳,蔡万源,蒋俊正. 稀疏分解和图拉普拉斯正则化的图像前景背景分割方法[J]. 浙江大学学报(工学版), 2024, 58(5): 979-987.
[2] 孙菲,厉小润,赵辽英,余绍奇. 基于FrFT变换和全变分正则化的异常检测算法[J]. 浙江大学学报(工学版), 2022, 56(7): 1276-1284.
[3] 柳长源,何先平,毕晓君. 融合注意力机制的高效率网络车型识别[J]. 浙江大学学报(工学版), 2022, 56(4): 775-782.
[4] 王泓晖,房鑫,李德江,刘贵杰. 基于动态贝叶斯网络的变幅载荷下疲劳裂纹扩展预测方法[J]. 浙江大学学报(工学版), 2021, 55(2): 280-288.
[5] 贾真,董文德,徐贵力,朱士鹏. 基于马尔科夫专家场的泊松噪声图像去噪方法[J]. 浙江大学学报(工学版), 2020, 54(6): 1164-1169.
[6] 成翔昊,达飞鹏,汪亮. 基于融合约束局部模型的三维人脸特征点定位[J]. 浙江大学学报(工学版), 2019, 53(4): 770-776.
[7] 叶鹏钊, 冯华君, 徐之海, 李奇, 陈跃庭. 基于块效应抑制的压缩降质模糊图像盲复原[J]. 浙江大学学报(工学版), 2018, 52(2): 406-412.
[8] 潘秋萍, 汪震, 甘德强, 谢欢, 李尚远. 基于数值微分的阻尼灵敏度方法比较[J]. 浙江大学学报(工学版), 2018, 52(1): 174-183.
[9] 欧阳青, 李赵春, 郑佳佳, 王炅. 多阶并联式磁流变缓冲器可控性分析[J]. 浙江大学学报(工学版), 2017, 51(5): 961-968.
[10] 蒋鑫龙, 陈益强, 刘军发, 忽丽莎, 沈建飞. 面向自闭症患者社交距离认知的可穿戴系统[J]. 浙江大学学报(工学版), 2017, 51(4): 637-647.
[11] 吴鹏洲,于慧敏,曾雄. 基于正则化风险最小化的目标计数[J]. 浙江大学学报(工学版), 2014, 48(7): 1226-1233.
[12] 陈国新, 陈生昌. 位场数据重构的lp范数稀疏约束正则化方法[J]. 浙江大学学报(工学版), 2014, 48(4): 748-785.
[13] 康轶非,宋永端,宋宇,闫德立. 不依赖里程计的机器人定位与地图构建[J]. J4, 2014, 48(3): 414-422.
[14] 潘俊, 孔繁胜, 王瑞琴. 局部敏感判别直推学习机[J]. J4, 2012, 46(6): 987-994.
[15] 肖冬峰,杨春节,宋执环. 基于改进BP网络的高炉煤气发生量预测模型[J]. J4, 2012, 46(11): 2103-2108.