Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2001-2010    DOI: 10.3785/j.issn.1008-973X.2024.10.003
计算机与控制工程     
基于知识共享的遮挡人体姿态估计网络
江佳鸿(),夏楠*(),李长吾,于鑫淼
大连工业大学 信息科学与工程学院,辽宁 大连 116034
Occluded human pose estimation network based on knowledge sharing
Jiahong JIANG(),Nan XIA*(),Changwu LI,Xinmiao YU
School of Information Science and Engineering, Dalian Polytechnic University, Dalian 116034, China
 全文: PDF(1801 KB)   HTML
摘要:

现有人体姿态估计方法处理遮挡情况时性能较差,为此提出新的估计网络,包含遮挡区域强化卷积网络(OCNN)和遮挡特征补偿图卷积网络(OGCN). 设计高低阶特征匹配注意力以强化遮挡区域特征,由OCNN提取高适配权重,通过少量遮挡数据的方式实现遮挡部位的强化检测. 由OGCN消除障碍物特征,通过强化关键点共有及专有属性的方式补偿节点特征;进行邻接矩阵重要性加权以改善遮挡部位特征质量,提升检测精度. 所提网络在数据集COCO2017、COCO-Wholebody、CrowdPose上的检测精度分别为78.5%、67.1%、77.8%,优于对比算法. 在自建遮挡数据集上所提网络节约了75%的训练数据使用.

关键词: 人体姿态估计遮挡处理高低阶特征匹配节点特征补偿邻接矩阵加权    
Abstract:

A new estimation network was proposed for improving the insufficient occlusion handling ability of existing human pose estimation methods. An occluded parts enhanced convolutional network (OCNN) and an occluded features compensation graph convolutional network (OGCN) were included in the proposed network. A high-low order feature matching attention was designed to strengthen the occlusion area features, and high-adaptation weights were extracted by OCNN, achieving enhanced detection of the occluded parts with a small amount of occlusion data. OGCN strengthened the shared and private attribute compensation node features by eliminating the obstacle features. The adjacency matrix was importance-weighted to enhance the quality of the occlusion area features and to improve the detection accuracy. The proposed network achieved detection accuracy of 78.5%, 67.1%, and 77.8% in the datasets COCO2017, COCO-Wholebody, and CrowdPose, respectively, outperforming the comparative algorithms. The proposed network saved 75% of the training data usage in the self-built occlusion dataset.

Key words: human pose estimation    occlusion handling    high-low order feature matching    node feature compensation    adjacency matrix weighting
收稿日期: 2024-03-26 出版日期: 2024-09-27
CLC:  TP 391.4  
基金资助: 教育部产学合作协同育人资助项目(220603231024713).
通讯作者: 夏楠     E-mail: jjh19990901@163.com;xianan@dlpu.edu.cn
作者简介: 江佳鸿(1999—),男,硕士生,从事人体姿态估计研究. orcid.org/0009-0006-2447-1968. E-mail:jjh19990901@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
江佳鸿
夏楠
李长吾
于鑫淼

引用本文:

江佳鸿,夏楠,李长吾,于鑫淼. 基于知识共享的遮挡人体姿态估计网络[J]. 浙江大学学报(工学版), 2024, 58(10): 2001-2010.

Jiahong JIANG,Nan XIA,Changwu LI,Xinmiao YU. Occluded human pose estimation network based on knowledge sharing. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2001-2010.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.003        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2001

图 1  基于知识共享的遮挡人体姿态估计网络流程图
图 2  高低阶特征匹配注意力流程图
图 3  关键点特征补偿和邻接矩阵重要性加权流程图
%
算法APAP5AP75APMAPLAR
文献[2]75.090.282.772.079.377.6
文献[3]74.892.581.672.079.377.6
文献[4]77.693.783.273.881.980.8
文献[6]72.191.480.068.877.278.5
文献[11]74.490.581.970.881.079.8
文献[12]77.392.183.873.683.380.1
文献[14]76.190.683.472.882.781.3
文献[20]75.690.183.072.783.278.5
文献[15]75.290.582.371.581.980.3
本研究78.594.084.274.782.680.6
表 1  不同算法在COCO2017数据集上的性能对比
%
算法全身躯干
APARAPARAPARAPARAPAR
文献[10]57.363.576.380.173.281.253.764.766.674.7
文献[18]65.376.962.268.989.193.059.970.472.179.4
文献[21]58.968.966.079.474.582.254.565.473.379.1
文献[28]65.474.461.771.888.993.062.574.074.080.7
文献[30]57.865.069.076.575.982.045.953.869.374.0
本研究67.177.974.376.889.793.365.576.676.881.5
表 2  不同算法在COCO-Wholebody数据集上的性能对比
%
算法APAP5AP75APeAPmAPh
文献[4]75.993.381.484.076.768.2
文献[13]71.190.878.380.071.761.6
文献[20]74.992.180.783.375.266.8
文献[28]73.092.880.985.172.264.7
本研究77.894.683.285.978.669.5
表 3  不同算法在CrowdPose数据集上的性能对比
算法GFLOPsPar/106v/(帧·s?1
文献[11]14.628.510.0
文献[20]28.519.811.2
文献[14]27.765.514.1
文献[22]37.133.812.4
文献[3]14.551.412.9
本研究29.464.511.1
表 4  不同算法的检测性能对比
图 4  不同算法的关键点热力图对比
图 5  基于知识共享的遮挡人体姿态估计网络的姿态估计效果图
图 6  不同算法的姿态估计效果图对比
1 孙雪菲, 张瑞峰, 关欣, 等 强化先验骨架结构的轻量型高效人体姿态估计[J]. 浙江大学学报: 工学版, 2024, 58 (1): 50- 60
SUN Xuefei, ZHANG Ruifeng, GUAN Xin, et al Lightweight and efficient human pose estimation with enhanced priori skeleton structure[J]. Journal of Zhejiang University: Engineering Science, 2024, 58 (1): 50- 60
2 YU X W, CHEN G S. HRPoseFormer: high-resolution Transformer for human pose estimation via multi-scale token aggregation [C]// IEEE 16th International Conference on Solid-State and Integrated Circuit Technology . Nanjing: IEEE, 2022: 1–3.
3 ZHOU L, CHEN Y, WANG J Progressive direction-aware pose grammar for human pose estimation[J]. IEEE Transactions on Biometrics, Behavior, and Identity Science, 2023, 5 (4): 593- 605
doi: 10.1109/TBIOM.2023.3315509
4 ZHANG Z, LIU M, SHEN J, et al Lightweight whole body human pose estimation with two-stage refinement training strategy[J]. IEEE Transactions on Human-Machine Systems, 2024, 54 (1): 121- 130
doi: 10.1109/THMS.2024.3349652
5 LIN J, ZHENG Z, ZHONG Z, et al. Joint representation learning and keypoint detection for cross-view geo-localization [J]. IEEE Transactions on Image Processing , 2022, 31: 3780–3792.
6 MENG Q, QIN C, BAI W, et al MulViMotion: shape-aware 3D myocardial motion tracking from multi-view cardiac MRI[J]. IEEE Transactions on Medical Imaging, 2022, 41 (8): 1961- 1974
doi: 10.1109/TMI.2022.3154599
7 CHAKRAVARTHI B, PATIL A K, RYU J Y, et al Scenario-based sensed human motion editing and validation through the motion-sphere[J]. IEEE Access, 2022, 10: 28295- 28307
doi: 10.1109/ACCESS.2022.3157939
8 MARQUES B, SILVA S, ALVES J, et al A conceptual model and taxonomy for collaborative augmented reality[J]. IEEE Transactions on Visualization and Computer Graphics, 2022, 28 (12): 5113- 5133
doi: 10.1109/TVCG.2021.3101545
9 LI N, CHEN X, FENG Y, et al Human–computer interaction cognitive behavior modeling of command and control systems[J]. IEEE Internet of Things Journal, 2022, 9 (14): 12723- 12736
doi: 10.1109/JIOT.2021.3138247
10 SUN K, XIAO B, LIU D, et al. Deep high-resolution representation learning for human pose estimation [C]// IEEE/CVF Conference on Computer Vision and Pattern Recognition . Long Beach: IEEE, 2019: 5693–5703.
11 WANG J, SUN K, CHENG T, et al Deep high-resolution representation learning for visual recognition[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (10): 3349- 3364
doi: 10.1109/TPAMI.2020.2983686
12 KE L, CHANG M C, QI H, et al DetPoseNet: improving multi-person pose estimation via coarse-pose filtering[J]. IEEE Transactions on Image Processing, 2022, 31: 2782- 2795
doi: 10.1109/TIP.2022.3161081
13 CAO Z, HIDALGO G, SIMON T, et al OpenPose: realtime multi-person 2D pose estimation using part affinity fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2021, 43 (1): 172- 186
doi: 10.1109/TPAMI.2019.2929257
14 LI Q, ZHANG Z, ZHANG F, et al HRNeXt: high-resolution context network for crowd pose estimation[J]. IEEE Transactions on Multimedia, 2023, 25 (46): 1521- 1528
15 KIM G, KIM H, KONG K, et al Human body aware feature extractor using attachable feature corrector for human pose estimation[J]. IEEE Transactions on Multimedia, 2023, 25: 5789- 5799
doi: 10.1109/TMM.2022.3199098
16 LIN T Y, MAIRE M, BELONGIE S, et al. Microsoft COCO: common objects in context [C]// European Conference on Computer Vision . [S. l.]: Springer, 2014: 740–755.
17 BANZI J, BULUGU I, YE Z Learning a deep predictive coding network for a semi-supervised 3D-hand pose estimation[J]. IEEE/CAA Journal of Automatica Sinica, 2020, 7 (5): 1371- 1379
doi: 10.1109/JAS.2020.1003090
18 KIM S, KANG S, CHOI H, et al Keypoint aware robust representation for transformer-based re-identification of occluded person[J]. IEEE Signal Processing Letters, 2023, 30: 65- 69
doi: 10.1109/LSP.2023.3240596
19 WANG Y J, LUO Y M, BAI G H, et al UformPose: a U-shaped hierarchical multi-scale keypoint-aware framework for human pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (4): 1697- 1709
doi: 10.1109/TCSVT.2022.3213206
20 PENG S, ZHOU X, LIU Y, et al PVNet: pixel-wise voting network for 6DoF object pose estimation[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (1): 3212- 3223
21 ARTACHO B, SAVAKIS A UniPose+: a unified framework for 2D and 3D human pose estimation in images and videos[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (12): 9641- 9653
doi: 10.1109/TPAMI.2021.3124736
22 GAI D, FENG R Y, MIN W, et al Spatiotemporal learning transformer for video-based human pose estimation[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2023, 33 (9): 4564- 4576
doi: 10.1109/TCSVT.2023.3269666
23 YIN Y, LIU M, ZHU Q, et al Multibranch attention graph convolutional networks for 3-D human pose estimation[J]. IEEE Transactions on Instrumentation and Measurement, 2023, 72: 2520412.
24 FAN J, ZHENG P, LI S, et al An integrated hand-object dense pose estimation approach with explicit occlusion awareness for human-robot collaborative disassembly[J]. IEEE Transactions on Automation Science and Engineering, 2024, 21 (1): 147- 156
doi: 10.1109/TASE.2022.3215584
25 PASA L, NAVARIN N, SPERDUTI A Multiresolution reservoir graph neural network[J]. IEEE Transactions on Neural Networks and Learning Systems, 2022, 33 (6): 2642- 2653
doi: 10.1109/TNNLS.2021.3090503
26 MORSHED M G, SULTANA T, LEE Y K LeL-GNN: learnable edge sampling and line based graph neural network for link prediction[J]. IEEE Access, 2023, 11: 56083- 56097
doi: 10.1109/ACCESS.2023.3283029
27 ISUFI E, GAMA F, RIBEIRO A EdgeNets: edge varying graph neural networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2022, 44 (11): 7457- 7473
doi: 10.1109/TPAMI.2021.3111054
28 XU L, JIN S, LIU W, et al ZoomNAS: searching for whole-body human pose estimation in the wild[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (8): 5296- 5313
29 LEE K, KIM W, LEE S From human pose similarity metric to 3D human pose estimator: temporal propagating LSTM networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2023, 45 (2): 1781- 1797
doi: 10.1109/TPAMI.2022.3164344
[1] 孙雪菲,张瑞峰,关欣,李锵. 强化先验骨架结构的轻量型高效人体姿态估计[J]. 浙江大学学报(工学版), 2024, 58(1): 50-60.