Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (7): 1365-1373    DOI: 10.3785/j.issn.1008-973X.2023.07.011
自动化技术     
球面手腕康复机构逆运动学解新方法及应用
焦文杰(),姬帅旭,郝惠敏,黄家海*(),李利娜,李诗雨
太原理工大学 机械与运载工程学院,山西 太原 030024
New method and application of inverse kinematic solution for spherical wrist rehabilitation mechanism
Wen-jie JIAO(),Shuai-xu JI,Hui-min HAO,Jia-hai HUANG*(),Li-na LI,Shi-yu LI
School of Mechanical and Transportation Engineering, Taiyuan University of Technology, Taiyuan 030024, China
 全文: PDF(7412 KB)   HTML
摘要:

针对球面手腕康复机器人的末端执行机构——共轴3RRR球面并联机构(CSPM)存在逆运动学解不完整性或无解析解的问题,提出基于欧拉角的逆运动学分步求解方法. 根据共轴球面并联机构的特性,可以将CSPM姿态欧拉角分解为绕Z轴和绕XY轴旋转的2个子姿态,求解绕XY轴旋转子姿态逆运动学解的集合. 选取每个关节逆运动学解集合中的较小值,与绕Z轴旋转的角度相加作为CSPM逆运动学解,利用CSPM正运动学验证了所提方法的正确性. 在真实手腕运动范围的基础上,以无连杆碰撞点和无奇异位形为约束条件,使用所提方法求解手腕康复装置的实际姿态空间. 在实际的姿态空间内,将提出的逆运动学求解方法与单位四元数相互转换,将单位四元数插补应用于CSPM运动规划中,理论计算结果与试验结果均为光滑的轨迹曲线,两者误差的最大值不超过2.5°.

关键词: 手腕康复机构球面并联机构逆运动学单位四元数插补    
Abstract:

The inverse kinematic step-by-step solution method based on Euler's angle was proposed to address the problem of incomplete or no analytical solution for the coaxial 3RRR spherical parallel mechanism (CSPM), which was the end-effector of the spherical wrist rehabilitation robot. The CSPM posture Euler angle can be decomposed into two sub-postures rotating around Z-axis and X, Y-axis based on the characteristics of the co-axial spherical parallel mechanism. The set of inverse kinematic solutions for the sub-postures rotating around X-axis and Y-axis was solved. The smaller value in the set of inverse kinematics solutions for each joint was selected and added to the angle of rotation around the Z-axis as the CSPM inverse kinematics solution. The correctness of the proposed method was verified by using CSPM forward kinematics. The actual attitude space of the wrist rehabilitation device was solved by using the proposed method with the constraints of no linkage collision point and no singularity configuration based on the real wrist motion range. The proposed inverse kinematics solution method was interconverted with unit quaternion in the actual posture space, and unit quaternion interpolation was applied to CSPM motion planning. The theoretical calculation results and experimental results were smooth trajectory curves, and the maximum value of both errors didn’t exceed 2.5°.

Key words: wrist rehabilitation mechanism    spherical parallel mechanism    inverse kinematics    unit quaternion interpolation
收稿日期: 2022-07-06 出版日期: 2023-07-17
CLC:  TP 391  
基金资助: 2020年山西省关键核心技术和共性技术研发攻关专项项目(2020XXX009);山西省应用基础研究计划青年科技研究基金资助项目(202103021223090)
通讯作者: 黄家海     E-mail: jiaowenjie0044@163.com;huangjiahai@tyut.edu.cn
作者简介: 焦文杰(1996—),男,硕士生,从事并联机器人控制研究. orcid.org/ 0009-0006-9406-6589. E-mail: jiaowenjie0044@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
焦文杰
姬帅旭
郝惠敏
黄家海
李利娜
李诗雨

引用本文:

焦文杰,姬帅旭,郝惠敏,黄家海,李利娜,李诗雨. 球面手腕康复机构逆运动学解新方法及应用[J]. 浙江大学学报(工学版), 2023, 57(7): 1365-1373.

Wen-jie JIAO,Shuai-xu JI,Hui-min HAO,Jia-hai HUANG,Li-na LI,Shi-yu LI. New method and application of inverse kinematic solution for spherical wrist rehabilitation mechanism. Journal of ZheJiang University (Engineering Science), 2023, 57(7): 1365-1373.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.07.011        https://www.zjujournals.com/eng/CN/Y2023/V57/I7/1365

图 1  人体腕关节运动模型
活动方式 $\gamma$/(°)
屈曲( F) $ 0\sim75 $
伸展(E) $ 0\sim75 $
内收(A) $ 0\sim45 $
外展(O) $ 0\sim20 $
旋内(M) $ 0\sim76 $
旋外(L) $ 0\sim85 $
表 1  手腕活动范围
图 2  CSPM坐标系的设定
图 3  CSPM驱动轴正方向的设定
图 4  求解唯一逆运动学解的流程图
图 5  3RRR球面并联机构连接点位置
图 6  不同碰撞的碰撞点位置
图 7  CSPM欧拉角工作空间
图 8  CSPM实际工作空间
图 9  单位四元数表示旋转
图 10  手腕康复机构样机
图 11  轨迹规划中欧拉角实验值与理论值的对比
1 苏丽丽, 方小养, 林玲, 等 上肢康复机器人训练对亚急性脑卒中患者认知和上肢运动功能的效果[J]. 中国康复理论与实践, 2022, 28 (5): 508- 514
SU Li-li, FANG Xiao-yang, LIN Ling, et al Effect of upper limb rehabilitation robot training on cognition and upper limb motor function of patients with subacute stroke[J]. Rehabilitation Theory and Practice in China, 2022, 28 (5): 508- 514
doi: 10.3969/j.issn.1006-9771.2022.05.003
2 WANG C, LU Z, WANG Y, et al. Development of a rehabilitation robot for hand and wrist rehabilitation training [C]// 2015 IEEE International Conference on Information and Automation. Lijiang: IEEE, 2015: 106-111.
3 PEHLIVAN A U, SERGI F, O'MALLEY M K A subject-adaptive controller for wrist robotic rehabilitation[J]. IEEE ASME Transactions on Mechatronics, 2014, 20 (3): 1338- 1350
4 王鹏铖, 丛晓妍, 朱宏轩 上肢柔性气动肌肉辅助康复设备设计[J]. 机械设计, 2021, 38 (12): 117- 121
WANG Peng-cheng, CONG Xiao-yan, ZHU Hong-xuan Design of upper limb flexible pneumatic muscle assisted rehabilitation equipment[J]. Mechanical Design, 2021, 38 (12): 117- 121
5 张邦成, 刘帅, 喻俊志, 等 绳索驱动腕部并联康复机构设计与逆运动学分析[J]. 机械工程学报, 2022, 58 (5): 57- 68
ZHANG Bang-cheng, LIU Shuai, YU Jun-zhi, et al Design and inverse kinematics analysis of rope-driven wrist parallel rehabilitation mechanism[J]. Mechanical Engineering Journal, 2022, 58 (5): 57- 68
6 李清, 赵立婷, 刘荣帅, 等 混联式腕关节康复机构的运动学仿真及康复效果评估[J]. 机械科学与技术, 2022, 41 (12): 1839- 1843
LI Qing, ZHAO Li-ting, LIU Rong-shuai, et al Kinematics simulation and rehabilitation effect evaluation of hybrid wrist rehabilitation mechanism[J]. Mechanical Science and Technology, 2022, 41 (12): 1839- 1843
7 姬帅旭, 梁永国, 郝惠敏, 等 基于共轴球面并联3RRR机构的手腕康复装置研制[J]. 机械传动, 2021, (10): 157- 163
JI Shuai-xu, LIANG Yong-guo, HAO Hui-min, et al Development of wrist rehabilitation device based on co-axial spherical parallel 3RRR mechanism[J]. Mechanical Transmission, 2021, (10): 157- 163
doi: 10.16578/j.issn.1004.2539.2021.10.025
8 TURSYNBEK I, NIYETKALIYE A, SHINTEMIROV A. Computation of unique kinematic solutions of a spherical parallel manipulator with coaxial input shafts [C]// IEEE 15th International Conference on Automation Science and Engineering. Vancouver: IEEE, 2019: 1524-1531.
9 GOSSELIN C M, LAVOIE E On the kinematic design of spherical three-degree-of-freedom parallel manipulators[J]. The International Journal of Robotics Research, 1993, 12 (4): 394- 402
doi: 10.1177/027836499301200406
10 ALIZADE R I, TAGIYEV N R, DUFFY J A forward and reverse displacement analysis of an in-parallel spherical manipulator[J]. Mechanism and Machine Theory, 1994, 29 (1): 125- 137
doi: 10.1016/0094-114X(94)90025-6
11 YONG Y K, LU T F Kinetostatic modeling of 3-RRR compliant micro-motion stages with flexure hinges[J]. Mechanism and Machine Theory, 2009, 44 (6): 1156- 1175
doi: 10.1016/j.mechmachtheory.2008.09.005
12 TAUNYAZOV T, RUBAGOTTI M, SHINTEMIROV A Constrained orientation control of a spherical parallel manipulator via online convex optimization[J]. IEEE/ASME Transactions on Mechatronics, 2017, 23 (1): 252- 261
13 NIYETKALIYEV A, SHINTEMIROV A. An approach for obtaining unique kinematic solutions of a spherical parallel manipulator [C]// IEEE/ASME International Co-nference on Advanced Intelligent Mechatronics. Besançon: IEEE, 2014: 1355-1360.
14 BUDDE C, ROSE M, MAASS J, et al. Automatic detection of assembly mode for a Triglide-robot [C]// IEEE International Conference on Robotics and Automation. Los Angeles: IEEE, 2008: 1568-1575.
15 BONEV I A, CHABLAT D, WENGER P. Working and assembly modes of the agile eye [C]// Proceedings 2006 IEEE International Conference on Robotics and Automation. Orlando: IEEE, 2006: 2317-2322.
16 沈志祥, 周士枋. 运动与康复[M]. 北京: 北京大学医学出版社, 2008: 99-103.
17 黑龙江省劳动保护科学技术研究所. 事故伤害损失工作日标准: GB/T 15499—1995 [S]. 北京: 中国标准出版社, 1996: 1-4 .
[1] 潜龙昊, 胡士强, 杨永胜. 多节双八面体变几何桁架臂逆运动学解析算法[J]. 浙江大学学报(工学版), 2017, 51(1): 75-81.
[2] 江沛, 黄水华, 韦巍, 单才华, 项基.
带关节约束的非冗余机械手臂二阶逆运动学控制
[J]. 浙江大学学报(工学版), 2015, 49(10): 1885-1892.
[3] 陈庆诚,朱世强,王宣银,张学群. 基于旋量理论的串联机器人逆解子问题求解算法[J]. J4, 2014, 48(1): 8-14.
[4] 姜宏超, 刘士荣, 张波涛. 六自由度模块化机械臂的逆运动学分析[J]. J4, 2010, 44(7): 1348-1354.