计算机与控制工程 |
|
|
|
|
基于条件生成模型的高效近似查询处理框架 |
白文超(),韩希先*(),王金宝 |
哈尔滨工业大学 计算机科学与技术学院,山东 威海 264201 |
|
Efficient approximate query processing framework based on conditional generative model |
Wen-chao BAI(),Xi-xian HAN*(),Jin-bao WANG |
College of Computer Science and Technology, Harbin Institute of Technology, Weihai 264201, China |
1 |
CHAUDHURI S, DING B, KANDULA S. Approximate query processing: no silver bullet [C]// Proceedings of the 2017 ACM International Conference on Management of Data. New York: ACM, 2017: 511-519.
|
2 |
LI K Y, LI G L Approximate query processing: what is new and where to go?[J]. Data Science and Engineering, 2018, 3 (4): 379- 397
doi: 10.1007/s41019-018-0074-4
|
3 |
OLKEN F, ROTEM D Random sampling from databases: a survey[J]. Statistics and Computing, 1995, 5 (1): 25- 42
doi: 10.1007/BF00140664
|
4 |
PANAHBEHAGH B Stratified and ranked composite sampling[J]. Communications in Statistics-simulation and Computation, 2020, 49 (2): 504- 515
doi: 10.1080/03610918.2018.1487067
|
5 |
ESCOBAR P, CANDELA G, TRUJILLO J, et al Adding value to linked open data using a multidimensional model approach based on the RDF data cube vocabulary[J]. Computer Standards and Interfaces, 1994, 5 (1): 25- 42
|
6 |
HILPRECHT B, SCHMIDT A, KULESSA M, et al Deepdb: learn from data, not from queries![J]. Proceedings of the VLDB Endowment, 2020, 13 (7): 992- 1005
doi: 10.14778/3384345.3384349
|
7 |
YAN L C, YOSHUA B, GEOFFREY H Deep learning[J]. Nature, 2015, 521 (7553): 436- 444
doi: 10.1038/nature14539
|
8 |
CRESWELL A, WHITE T, DUMOULIN V, et al Generative adversarial networks: an overview[J]. IEEE Signal Processing Magazine, 2018, 35 (1): 53- 65
doi: 10.1109/MSP.2017.2765202
|
9 |
CORMODE G, GAROFALAKIS M, HASS P J, et al Synopses for massive data: samples, histograms, wavelets, sketches[J]. Foundations and Trends in Databases, 2012, 4 (1−3): 1- 294
|
10 |
CHAUDHURI S, DAS G, NARASAYYA V Optimized stratified sampling for approximate query processing[J]. ACM Transactions on Database Systems (TODS), 2007, 32 (2): 1- 50
|
11 |
NGUYEN T D, SHIH M H, PARVATHANENI S S, et al. Random sampling for group-by queries [C]// 2020 IEEE 36th International Conference on Data Engineering (ICDE). Piscataway: IEEE, 2020: 541-552.
|
12 |
DING B, HUANG S, CHAUDHURI S, et al. Sample+ seek: approximating aggregates with distribution precision guarantee [C]// Proceedings of the 2016 International Conference on Management of Data. New York: ACM, 2016: 679-694.
|
13 |
AGARWAL S, MOZAFARI B, PANDA A, et al. Blinkdb: queries with bounded errors and bounded response times on very large data [C]// Proceedings of the 8th ACM European Conference on Computer Systems. New York: ACM, 2013: 29-42.
|
14 |
VITTER J S, WANG M Approximate computation of multidimensional aggregates of sparse data using wavelets[J]. ACM Sigmod Record, 1999, 28 (2): 193- 204
doi: 10.1145/304181.304199
|
15 |
MA Q, TRIANTAFILLOU P. Dbest: revisiting approximate query processing engines with machine learning models [C]// Proceedings of the 2019 International Conference on Management of Data. New York: ACM, 2019: 1553-1570.
|
16 |
THIRUMURUGANATHAN S, HASAN S, KOUDAS N, et al. Approximate query processing for data exploration using deep generative models [C]// 2020 IEEE 36th International Conference on Data Engineering (ICDE). Piscataway: IEEE, 2020: 1309-1320.
|
17 |
ZHANG M, WANG H. Approximate query processing for group-by queries based on conditional generative models[EB/OL]. (2021-01-08). https://arxiv.org/abs/2101.02914v1.
|
18 |
YUN H, KIM Y, KANG T, et al Pairwise context similarity for image retrieval system using variational auto-encoder[J]. IEEE Access, 2021, 9 (1): 34067- 34077
|
19 |
CAO Y, LIU B, LONG M, et al. Hashgan: deep learning to hash with pair conditional Wasserstein gan [C]// Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway: IEEE, 2018: 1287-1296.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|