计算机技术、信息工程 |
|
|
|
|
基于实例分割的复杂环境车道线检测方法 |
杨淑琴(),马玉浩,方铭宇,钱伟行*(),蔡洁萱,刘童 |
南京师范大学 电气与自动化工程学院,江苏 南京 210023 |
|
Lane detection method in complex environments based on instance segmentation |
Shu-qin YANG(),Yu-hao MA,Ming-yu FANG,Wei-xing QIAN*(),Jie-xuan CAI,Tong LIU |
School of Electrical and Automation Engineering, Nanjing Normal University, Nanjing 210023, China |
引用本文:
杨淑琴,马玉浩,方铭宇,钱伟行,蔡洁萱,刘童. 基于实例分割的复杂环境车道线检测方法[J]. 浙江大学学报(工学版), 2022, 56(4): 809-815, 832.
Shu-qin YANG,Yu-hao MA,Ming-yu FANG,Wei-xing QIAN,Jie-xuan CAI,Tong LIU. Lane detection method in complex environments based on instance segmentation. Journal of ZheJiang University (Engineering Science), 2022, 56(4): 809-815, 832.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.04.021
或
https://www.zjujournals.com/eng/CN/Y2022/V56/I4/809
|
1 |
罗杨. 复杂环境下的车道线检测 [D]. 成都: 电子科技大学, 2020. LUO Yang. Lane detection under complicated environment [D]. Chengdu: University of Electronic Science and Technology of China, 2020.
|
2 |
NGUYEN T N A, PHUNG S L, BOUZERDOUM A Hybrid deep learning-gaussian process network for pedestrian lane detection in unstructured scenes[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31 (12): 5324- 5338
doi: 10.1109/TNNLS.2020.2966246
|
3 |
吴一全, 刘莉 基于视觉的车道线检测方法研究进展[J]. 仪器仪表学报, 2019, 40 (12): 92- 109 WU Yi-quan, LIU Li Research and development of the vision-based lane detection methods[J]. Chinese Journal of Scientific Instrument, 2019, 40 (12): 92- 109
|
4 |
胡忠闯. 基于深度学习的车道线检测算法研究 [D]. 杭州: 浙江大学, 2018. HU Zhong-chuang. Deep learning based lane markings detection algorithm [D]. Hangzhou: Zhejiang University, 2018.
|
5 |
YOO H, YANG U, SOHN K Gradient-enhancing conversion for illumination-robust lane detection[J]. IEEE Transactions on Intelligent Transportation Systems, 2013, 14 (3): 1083- 1094
doi: 10.1109/TITS.2013.2252427
|
6 |
吴骅跃, 赵祥模 基于IPM和边缘图像过滤的多干扰车道线检测[J]. 中国公路学报, 2020, 33 (5): 153- 164 WU Hua-yue, ZHAO Xiang-mo Multi-interference lane recognition based on IPM and edge image filtering[J]. China Journal of Highway and Transport, 2020, 33 (5): 153- 164
doi: 10.3969/j.issn.1001-7372.2020.05.014
|
7 |
SHEN Y H, BI Y R, YANG Z, et al Lane line detection and recognition based on dynamic ROI and modified firefly algorithm[J]. International Journal of Intelligent Robotics and Applications, 2021, 5 (2): 143- 155
doi: 10.1007/s41315-021-00175-2
|
8 |
庞彦伟, 修宇璇 基于边缘特征融合和跨连接的车道线语义分割神经网络[J]. 天津大学学报: 自然科学与工程技术版, 2019, 52 (8): 779- 787 PANG Yan-wei, XIU Yu-xuan Lane semantic segmentation neural network based on edge feature merging and skip connections[J]. Journal of Tianjin University: Science and Technology, 2019, 52 (8): 779- 787
|
9 |
PAN X G, SHI J P, LUO P, et al. Spatial as deep: spatial CNN for traffic scene understanding [C]// 32nd AAAI Conference on Artificial Intelligence. New Orleans: AAAI, 2018: 7276-7283.
|
10 |
NEVEN D, BRABANDERE B D, GEORGOULIS S, et al. Towards end-to-end lane detection: an instance segmentation approach [C]// 2018 IEEE Intelligent Vehicles Symposium. Suzhou: IEEE, 2018: 286-291.
|
11 |
CAI Z W, VASCONCELOS N. Cascade R-CNN: delving into high quality object detection [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 6154-6162.
|
12 |
CHEN K, PANG J M, WANG J Q, et al. Hybrid task cascade for instance segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Long Beach: IEEE, 2019: 4969-4978.
|
13 |
HE K M, ZHANG X Y, REN S Q, et al. Deep residual learning for image recognition [C]// IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
|
14 |
YU F, KOLTUN V. Multi-scale context aggregation by dilated convolutions [C]// International Conference on Learning Representations. San Juan: [s.n.], 2016: 1-13.
|
15 |
DAI J F, QI H Z, XIONG Y W, et al. Deformable convolutional networks [C]// IEEE International Conference on Computer Vision. Venice: IEEE, 2017: 764-773.
|
16 |
LIU Z W, SHEN C, FAN X, et al Scale-aware limited deformable convolutional neural networks for traffic sign detection and classification[J]. IET Intelligent Transport Systems, 2020, 14 (12): 1712- 1722
doi: 10.1049/iet-its.2020.0217
|
17 |
CHEN S Y, ZHANG Z X, ZHONG R F, et al A dense feature pyramid network-based deep learning model for road marking instance segmentation using MLS point clouds[J]. IEEE Transactions on Geoscience and Remote Sensing, 2021, 59 (1): 784- 800
doi: 10.1109/TGRS.2020.2996617
|
18 |
LIU S, QI L, QIN H F, et al. Path aggregation network for instance segmentation [C]// IEEE Conference on Computer Vision and Pattern Recognition. Salt Lake City: IEEE, 2018: 8759-8768.
|
19 |
周志华. 机器学习[M]. 1版. 北京: 清华大学出版社, 2016: 24-26.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|