计算机与控制工程 |
|
|
|
|
基于意图识别的不确定性行为序列预测方法 |
何飞1,2( ),金苍宏1,吴明晖1,*( ) |
1. 浙大城市学院 计算机与计算科学学院,浙江 杭州 310015 2. 浙江大学 计算机科学与技术学院,浙江 杭州 310027 |
|
Uncertain behavior sequence prediction method based on intent identification |
Fei HE1,2( ),Cang-hong JIN1,Ming-hui WU1,*( ) |
1. School of Computer and Computing Science, Zhejiang University City College, Hangzhou 310015, China 2. College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China |
1 |
冯兴杰, 曾云泽 基于评分矩阵与评论文本的深度推荐模型[J]. 计算机学报, 2020, 43 (5): 884- 900 FENG Xing-jie, ZENG Yun-ze Joint deep modeling of rating matrix and reviews for recommendation[J]. Chinese Journal of Computers, 2020, 43 (5): 884- 900
doi: 10.11897/SP.J.1016.2020.00884
|
2 |
陈彦敏, 王皓, 马建辉, 等 基于层级注意力机制的互联网用户信用评估框架[J]. 计算机研究与发展, 2020, 57 (8): 1755- 1768 CHEN Yan-min, WANG Hao, MA Jian-hui, et al A hierarchical attention mechanism framework for internet credit evaluation[J]. Journal of Computer Research and Development, 2020, 57 (8): 1755- 1768
doi: 10.7544/issn1000-1239.2020.20200217
|
3 |
GU Y, YANG X, PENG M, et al Robust weighted SVD-type latent factor models for rating prediction[J]. Expert Systems with Applications, 2020, 141: 112885
doi: 10.1016/j.eswa.2019.112885
|
4 |
EKSTRAND M D, RIEDL J T, KONSTAN J A. Collaborative filtering recommender systems [M]. Boston: Now Publishers Inc, 2011.
|
5 |
黄璐, 林川杰, 何军, 等 融合主题模型和协同过滤的多样化移动应用推荐[J]. 软件学报, 2017, 28 (3): 708- 720 HUANG Lu, LIN Chuan-jie, HE Jun, et al Diversified mobile app recommendation combining topic model and collaborative filtering[J]. Journal of Software, 2017, 28 (3): 708- 720
|
6 |
LIU D R, LAI C H, LEE W J A hybrid of sequential rules and collaborative filtering for product recommendation[J]. Information Sciences, 2009, 179 (20): 3505- 3519
doi: 10.1016/j.ins.2009.06.004
|
7 |
JARBOUI F, GRUSON-DANIEL C, DURMUS A, et al. Markov decision process for MOOC users behavioral inference [C]// European MOOCs Stakeholders Summit. Naples: Springer, 2019: 70-80.
|
8 |
HIDASI B, KARATZOGLOU A, BALTRUNAS L, et al. Session-based recommendations with recurrent neural networks[EB/OL]. [2021-10-10]. https://arxiv.org/abs/1511.06939.
|
9 |
CHO K, VAN MERRIËNB B, GULCEHRE C, et al. Learning phrase representations using RNN encoder-decoder for statistical machine translation [EB/OL]. [2021-10-10]. https://arxiv.org/abs/1406.1078.
|
10 |
YU Z, LIAN J, MAHMOODY A, et al. Adaptive user modeling with long and short-term preferences for personalized recommendation [C]// Proceedings of the 28th International Joint Conference on Artificial Intelligence. Macao: AAAI Press, 2019: 4213-4219.
|
11 |
SHEIL H, RANA O. Classifying and recommending using gradient boosted machines and vector space models [C]// UK Workshop on Computational Intelligence. Nottingham: Springer, 2017: 214-221.
|
12 |
TANG J, WANG K. Personalized top-n sequential recommendation via convolutional sequence embedding [C]// Proceedings of the 11th ACM International Conference on Web Search and Data Mining. [S.l.] : ACM, 2018: 565-573.
|
13 |
刘浩翰, 吕鑫, 李建伏 考虑用户意图和时间间隔的会话型深度学习推荐系统[J]. 计算机应用与软件, 2021, 38 (3): 190- 195 LIU Hao-han, LV Xin, LI Jian-fu A session based deeplearning recommendation system considering userpurpose and time interval[J]. Computer Applications and Software, 2021, 38 (3): 190- 195
|
14 |
CAO L, PHILIP S Y Behavior informatics: an informatics perspective for behavior studies[J]. IEEE Intelligent Informatics Bulletin, 2009, 10 (1): 6- 11
|
15 |
WANG J, HUANG P, ZHAO H, et al. Billion-scale commodity embedding for e-commerce recommendation in Alibaba [C]// Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. London: ACM, 2018: 839-848.
|
16 |
PEROZZI B, AL-RFOU R, SKIENA S. Deepwalk: online learning of social representations [C]// Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York: ACM, 2014: 701-710.
|
17 |
MIKOLOV T, CHEN K, CORRADO G, et al. Efficient estimation of word representations in vector space [EB/OL]. [2021-10-10]. https://arxiv.org/abs/1301.3781.
|
18 |
王永贵, 刘凯奇 一种优化聚类的协同过滤推荐算法[J]. 计算机工程与应用, 2020, (15): 66- 73 WANG Yong-gui, LIU Kai-qi Collaborative filtering recommendation algorithm for clustering optimization[J]. Computer Engineering and Applications, 2020, (15): 66- 73
doi: 10.3778/j.issn.1002-8331.1910-0095
|
19 |
岳希, 唐聃, 舒红平, 等 基于数据稀疏性的协同过滤推荐算法改进研究[J]. 工程科学与技术, 2020, 52 (1): 198- 202 YUE Xi, TANG Dan, SHU Hong-ping, et al Research on improvement of collaborative filtering recommendation algorithm based on data sparseness[J]. Advanced Engineering Sciences, 2020, 52 (1): 198- 202
|
20 |
WARSHAW P R, DAVIS F D Disentangling behavioral intention and behavioral expectation[J]. Journal of Experimental Social Psychology, 1985, 21 (3): 213- 228
doi: 10.1016/0022-1031(85)90017-4
|
21 |
AJZEN I The theory of planned behavior[J]. Organizational Behavior and Human Decision Processes, 1991, 50 (2): 179- 211
doi: 10.1016/0749-5978(91)90020-T
|
22 |
HAN J, PEI J, MORTAZAVI-ASL B, et al. Prefixspan: mining sequential patterns efficiently by prefix-projected pattern growth [C]// Proceedings of the 17th International Conference on Data Engineering. Heidelberg: IEEE, 2001: 215-224.
|
23 |
MovieLens 1M dataset [DB/OL]. [2021-10-10]. https://grouplens.org/datasets/movielens/1m/.
|
24 |
HARPER F M, KONSTAN J A The movielens datasets: history and context[J]. ACM Transactions on Interactive Intelligent Systems, 2015, 5 (4): 1- 19
|
25 |
RecSys2015 [DB/OL]. [2021-10-10]. https://recsys.acm.org/recs ys15/.
|
26 |
MCAULEY J. Amazon product data [DB/OL]. [2021-10-10]. http://jmcauley.ucsd.edu/data/amazon/.
|
27 |
MCAULEY J, TARGETT C, SHI Q, et al. Image-based recommendations on styles and substitutes [C]// Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago: ACM, 2015: 43-52.
|
28 |
YUAN Q, CONG G, SUN A. Graph-based point-of-interest recommendation with geographical and temporal influences [C]// Proceedings of the 23rd ACM International Conference on Conference on Information and Knowledge Management. Shanghai: ACM, 2014: 659-668.
|
29 |
ZHAO S L, ZHAO T, YANG H Q, et al. Stellar: spatial-temporal latent ranking for successive point-of-interest recommendation [C]// Proceedings of the 30th AAAI Conference on Artificial Intelligence. Phoenix: AAAI Press, 2016: 315–321.
|
30 |
LINDEN G, SMITH B, YORK J Amazon. com recommendations: item-to-item collaborative filtering[J]. IEEE Internet Computing, 2003, 7 (1): 76- 80
doi: 10.1109/MIC.2003.1167344
|
31 |
RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR: Bayesian personalized ranking from implicit feedback [EB/OL]. [2021-10-10]. https://arxiv.org/abs/1205.2618.
|
32 |
LI J, REN P, CHEN Z, et al. Neural attentive session-based recommendation [C]// Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. Singapore: ACM, 2017: 1419–1428.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|