Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2454-2462    DOI: 10.3785/j.issn.1008-973X.2022.12.014
土木工程、水利工程     
不同CO2养护压力下硫铝酸盐和硅酸盐水泥浆体早期微观结构
兰燕1(),顾棋1,彭宇1,曾强1,*(),ZHANG Zhidong 2
1. 浙江大学 建筑工程学院,浙江 杭州 310058
2. 苏黎世联邦理工学院 建筑材料研究所,苏黎世州 苏黎世 8092
Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures
Yan LAN1(),Qi GU1,Yu PENG1,Qiang ZENG1,*(),Zhidong ZHANG2
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
2. Institute for Building Materials, ETH Zurich, Zurich 8092, Switzerland
 全文: PDF(1825 KB)   HTML
摘要:

研究硫铝酸盐和硅酸盐水泥(CSA-OPC)浆体在不同碳养护压力下的早期碳化过程,通过X射线衍射、红外光谱、热重、压汞和扫描电镜等测试方法,表征碳化前后水泥浆体的物相组成和微观结构. 实验结果表明,CSA-OPC浆体的水化产物主要为钙矾石,碳化作用使钙矾石转变为碳酸钙和硫酸钙晶体;水泥中碳酸钙以3种晶型存在,其中方解石为主要存在形式. 碳化使半碳型的水化硫铝酸钙(Hc-AFm相)逐渐转化为单碳型的水化硫铝酸钙(Mc-AFm相),碳化程度和碳化深度随着碳化压力的增加而递增. 碳化后CSA-OPC水化产物体积减小,样品总孔隙率增大、孔隙结构变疏松. 研究结果阐明了CSA-OPC浆体在早期碳化养护条件下的微结构变化过程,为制备基于硫铝酸盐水泥的高效碳汇材料提供了技术支撑.

关键词: 硫铝酸盐水泥钙矾石碳化微结构    
Abstract:

Carbonation process of calcium sulphoaluminate and ordinary Portland cement (CSA-OPC) paste under different carbon curing pressures at early age was investigated. X-ray diffraction, infrared spectroscopy, thermogravimetry, mercury intrusion porosimetry, and scanning electron microscopy were used to characterize the phase composition and microstructure of the paste before and after carbonation. Experimental results show that ettringite is the main hydration product of the CSA-OPC paste. After carbonation, ettringite is converted to calcium carbonate and calcium sulfate crystals. Calcium carbonate exists in three crystal forms in the paste, among which calcite is the main crystal. In addition, hemi-carbonate calcium sulfoaluminate hydrates (Hc-AFm) transfers to mono-carbonate calcium sulfoaluminate hydrates (Mc-AFm) after carbon curing. Carbonation degree and depth increase with the carbonation pressure. CSA-OPC hydration products’ volume decreases after carbonation, resulting in the increased total porosity and loose pore structure. The findings explore the microstructure alteration of CSA-OPC under early-age carbon curing, and provide a technique route for the fabrication of carbon-sinking materials based on calcium sulphoaluminate cement.

Key words: sulphoaluminate cement    ettringite    carbonation    microstructure
收稿日期: 2022-01-12 出版日期: 2023-01-03
CLC:  TU 525  
基金资助: 浙江大学教育基金会浙江大学-世界顶尖大学合作计划基金资助
通讯作者: 曾强     E-mail: 22112049@zju.edu.cn;cengq14@zju.edu.cn
作者简介: 兰燕(1998—),女,硕士生,从事碳化中性化混凝土中钢筋锈蚀机理研究. orcid.org/0000-0002-3101-1568.E-mail: 22112049@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
兰燕
顾棋
彭宇
曾强
ZHANG Zhidong

引用本文:

兰燕,顾棋,彭宇,曾强,ZHANG Zhidong . 不同CO2养护压力下硫铝酸盐和硅酸盐水泥浆体早期微观结构[J]. 浙江大学学报(工学版), 2022, 56(12): 2454-2462.

Yan LAN,Qi GU,Yu PENG,Qiang ZENG,Zhidong ZHANG. Microstructure of early-age calcium sulphoaluminate and ordinary Portland cement paste cured under different CO2 pressures. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2454-2462.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.014        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2454

水泥类别 wB wLOI wT
SiO2 Al2O3 Fe2O3 CaO SO3 MgO TiO2
%
CSA 16.19 17.62 4.30 47.14 8.98 3.48 0.46 1.22 99.39
OPC 23.13 5.63 3.39 60.63 3.70 1.88 ? 1.12 99.48
表 1  水泥化学组成
图 1  硫铝酸盐水泥和硅酸盐水泥粒径分布曲线
组别 m0/g m1/g Δm/g F/%
对照 14.60 13.31 1.29 50.1
0.05 MPa 14.90 13.70 1.20 51.6
0.5 MPa 14.62 13.39 1.23 52.3
表 2  硫铝酸盐和硅酸盐水泥净浆试样烘干前后质量
图 2  自制混凝土碳化反应器示意图
图 3  不同碳化压力下的硫铝酸盐和硅酸盐水泥浆体碳化深度
图 4  硫铝酸盐和硅酸盐水泥样品X射线衍射谱图
晶型 v1 v2 v3 v4
cm?1
非晶型 1 067 864/866 1 490/1 475 725
V型 1 089 877/878 1 487/1 490 746
A型 1 083 854/856 1 488/1 490 713
C型 877/876 1 420 713
表 3  不同晶型碳酸钙红外光谱振动频率[21]
图 5  硫铝酸盐和硅酸盐水泥样品红外光谱分析图
图 6  硫铝酸盐和硅酸盐水泥样品热重分析曲线
图 7  根据热重曲线计算所得各相质量分数
图 8  硫铝酸盐和硅酸盐水泥样品扫描电镜微观形貌及能谱分析
图 9  硫铝酸盐和硅酸盐水泥样品孔径分布曲线
图 10  硫铝酸盐和硅酸盐水泥样品碳化后强度变化
图 11  硫铝酸盐和硅酸盐水泥碳化反应机理图
1 MILLER S A, HORVATH A, MONTEIRO P J M Impacts of booming concrete production on water resources worldwide[J]. Nature Sustainability, 2018, 1: 69- 76
doi: 10.1038/s41893-017-0009-5
2 SHARP J H, LAWRENCE C D, YANG R Calcium sulfoaluminate cements: low-energy cements, special cements or what?[J]. Advances in Cement Research, 1999, 11 (1): 3- 13
3 MILLER S A, MYERS R J Environmental impacts of alternative cement binders[J]. Environmental Science and Technology, 2020, 54 (2): 677- 686
doi: 10.1021/acs.est.9b05550
4 XI F M, DAVIS S J, CIAIS P, et al Substantial global carbon uptake by cement carbonation[J]. Nature Geoscience, 2016, 9: 880- 883
doi: 10.1038/ngeo2840
5 GUO X L Calcium sulfoaluminate (CSA) blended cements[J]. Magazine of Concrete Research, 2016, 68 (4): 208- 215
doi: 10.1680/macr.15.00123
6 QUILLIN K Performance of belite–sulfoaluminate cements[J]. Cement and Concrete Research, 2001, 31 (9): 1341- 1349
doi: 10.1016/S0008-8846(01)00543-9
7 NDIAYE K, CYR M, GINESTET S Durability and stability of an ettringite-based material for thermal energy storage at low temperature[J]. Cement and Concrete Research, 2017, 99: 106- 115
doi: 10.1016/j.cemconres.2017.05.001
8 BUI H, BOUTOUIL M, LEVACHER D, et al Evaluation of the influence of accelerated carbonation on the microstructure and mechanical characteristics of coconut fibre-reinforced cementitious matrix[J]. Journal of Building Engineering, 2021, 39: 102269
doi: 10.1016/j.jobe.2021.102269
9 WANG W K, WEI X C, CAI X H, et al Mechanical and microstructural characteristics of calcium sulfoaluminate cement exposed to early-age carbonation curing[J]. Materials, 2021, 14 (13): 3515
doi: 10.3390/ma14133515
10 CHEN T F, GAO X J, QIN L Mathematical modeling of accelerated carbonation curing of Portland cement paste at early age[J]. Cement and Concrete Research, 2019, 120: 187- 197
doi: 10.1016/j.cemconres.2019.03.025
11 SHARMA D, GOYAL S Accelerated carbonation curing of cement mortars containing cement kiln dust: an effective way of CO2 sequestration and carbon footprint reduction [J]. Journal of Cleaner Production, 2018, 192: 844- 854
doi: 10.1016/j.jclepro.2018.05.027
12 EI-HASSAN H, SHAO Y X Early carbonation curing of concrete masonry units with Portland limestone cement[J]. Cement and Concrete Composites, 2015, 62: 168- 177
doi: 10.1016/j.cemconcomp.2015.07.004
13 ZHANG J J, LI G X, YE W T, et al Effects of ordinary Portland cement on the early properties and hydration of calcium sulfoaluminate cement[J]. Construction and Building Materials, 2018, 186: 1144- 1153
doi: 10.1016/j.conbuildmat.2018.08.008
14 SAOÛT G L, LOTHENBACH B, HORI A, et al Hydration of Portland cement with additions of calcium sulfoaluminates[J]. Cement and Concrete Research, 2013, 43: 81- 94
doi: 10.1016/j.cemconres.2012.10.011
15 TRAUCHESSEC R, MECHLING J, LECOMTE A, et al Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends[J]. Cement and Concrete Composites, 2015, 56: 106- 114
doi: 10.1016/j.cemconcomp.2014.11.005
16 LUGE C, MARUYAMA I, REN Y Novel accelerated test method for RH dependency of steel corrosion in carbonated mortar[J]. Journal of Advanced Concrete Technology, 2021, 19 (3): 207- 215
doi: 10.3151/jact.19.207
17 ZHANG Z D, SCHERER G W Evaluation of drying methods by nitrogen adsorption[J]. Cement and Concrete Research, 2019, 120: 13- 26
doi: 10.1016/j.cemconres.2019.02.016
18 卢豹. 硅酸盐水泥CO2养护及后续水化研究[D]. 长沙: 湖南大学, 2020.
LU Bao. The hardening behaviour of CO2-cured Portland cement and post hydration [D]. Changsha: Hunan University, 2020.
19 MEHDIZADEH H, JIA X X, MO K H, et al Effect of water-to-cement ratio induced hydration on the accelerated carbonation of cement pastes[J]. Environmental Pollution, 2021, 280: 116914
doi: 10.1016/j.envpol.2021.116914
20 SKOCEK J, ZAJAC M, BEN HAHA M Carbon capture and utilization by mineralization of cement pastes derived from recycled concrete[J]. Scientific Reports, 2020, 10: 5614
doi: 10.1038/s41598-020-62503-z
21 STEINER S, LOTHENBACH B, PROSKE T, et al Effect of relative humidity on the carbonation rate of portlandite, calcium silicate hydrates and ettringite[J]. Cement and Concrete Research, 2020, 135: 106116
doi: 10.1016/j.cemconres.2020.106116
22 GASTALDI D, BERTOLA F, CANONICO F, et al A chemical/mineralogical investigation of the behavior of sulfoaluminate binders submitted to accelerated carbonation[J]. Cement and Concrete Research, 2018, 109: 30- 41
doi: 10.1016/j.cemconres.2018.04.006
23 SEO J, KIM S, PARK S, et al Carbonation of calcium sulfoaluminate cement blended with blast furnace slag[J]. Cement and Concrete Composites, 2021, 118: 103918
doi: 10.1016/j.cemconcomp.2020.103918
24 ZHANG D, LI V C, ELLIS B R Ettringite-related dimensional stability of CO2-cured Portland [J]. ACS Sustainable Chemistry and Engineering, 2019, 7: 16310- 16319
doi: 10.1021/acssuschemeng.9b03345
25 HARGIS C W, LOTHENBACH B, MÜLLER C J, et al Carbonation of calcium sulfoaluminate mortars[J]. Cement and Concrete Composites, 2017, 80: 123- 134
doi: 10.1016/j.cemconcomp.2017.03.003
26 CHEN B, HORGNIES M, HUET B, et al Comparative kinetics study on carbonation of ettringite and meta-ettringite based materials[J]. Cement and Concrete Research, 2020, 137: 106209
doi: 10.1016/j.cemconres.2020.106209
27 MOFFATT E G. Durability of rapid-set (ettringite-based) binders [D]. [S. l.]: University of New Brunswick, 2016.
28 张玲峰, 韩建德, 刘伟庆, 等 碳化导致水泥基材料微观结构演变的研究进展[J]. 材料导报, 2015, 29 (3): 85- 95
ZHANG Ling-feng, HAN Jian-de, LIU Wei-qing, et al Microstructure evolution of cement-based materials caused by carbonation reaction: a review[J]. Materials Reports, 2015, 29 (3): 85- 95
29 吴萌, 姬永生, 张领雷, 等 石膏对碳硫硅钙石型硫酸盐破坏的影响[J]. 硅酸盐学报, 2016, 44 (11): 1571- 1578
WU Meng, JI Yong-sheng, ZHANG Ling-lei, et al Effect of gypsum on thaumasite form of sulfate attack[J]. Journal of the Chinese Ceramic Society, 2016, 44 (11): 1571- 1578
doi: 10.14062/j.issn.0454-5648.2016.11.05
30 NEHDI M, MINDESS S, AÏTCIN P-C Optimization of high strength limestone filler cement mortars[J]. Cement and Concrete Research, 1996, 26 (6): 883- 893
doi: 10.1016/0008-8846(96)00071-3
31 MESBAH A, CAU-DIT-COUMES C, RENAUDIN G, et al Uptake of chloride and carbonate ions by calcium monosulfoaluminate hydrate[J]. Cement and Concrete Research, 2012, 42 (8): 1157- 1165
doi: 10.1016/j.cemconres.2012.05.012
32 JOHANNESSON B, UTGENANNT P Microstructural changes caused by carbonation of cement mortar[J]. Cement and Concrete Research, 2001, 31 (6): 925- 931
doi: 10.1016/S0008-8846(01)00498-7
[1] 韩兴博,叶飞,梁晓明,冯浩岚,王蕾,夏永旭. 公路隧道钢筋混凝土衬砌碳化耐久性区划[J]. 浙江大学学报(工学版), 2021, 55(8): 1436-1443.
[2] 倪敬,郭鑫润,毋少峰,任旭. 拉刀切削刃表面微结构对拉削性能的影响[J]. 浙江大学学报(工学版), 2019, 53(11): 2067-2075.
[3] 龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 2017, 51(4): 784-791.
[4] 童芸芸, BOUTEILLER Véronique, MARIEVICTOIRE Elisabeth,JOIRET Suzanne. 外加电源式再碱化处理的耐久性探究[J]. J4, 2011, 45(9): 1664-1671.
[5] 童芸芸, BOUTEILLER Véronique, MARIE-VICTOIRE Elisabeth, JOIRET Suzanne. 钢筋腐蚀程度对电化学再碱化处理效果的影响[J]. J4, 2011, 45(11): 1991-1996.
[6] 王志远, 林东强, 姚善泾. 直接溶解法制备纤维素/碳化钨复合扩张床基质[J]. J4, 2010, 44(5): 998-1002.
[7] 杨光义 吴仁兵 陈建军 高明霞 翟蕊 吴玲玲 林晶 潘颐. 金属硅化物熔体中不同形貌SiC晶体的生长[J]. J4, 2007, 41(6): 1042-1046.
[8] 殷胜勇 葛霁光 郭淼. 长期灌流维持肾脏功能损伤的内在机理研究[J]. J4, 2006, 40(8): 1339-1343.
[9] 吕春华 殷学锋 刘东元 方肇伦. 高深宽比SU-8微结构的简易加工技术[J]. J4, 2006, 40(8): 1289-1292.
[10] 程继鹏 张孝彬 弋桂芬. 含铁粒子修饰碳纳米管的初步研究[J]. J4, 2006, 40(4): 676-678.
[11] 余萍 邱东江 樊瑞新 施红军 吴惠桢. 掺杂ZnO薄膜的微结构及电学特性[J]. J4, 2006, 40(11): 1873-1877.
[12] 张际亮 沃银花 郦剑 甘正浩 徐亚伯. 铝基APCVD沉积SiOx膜层的光学性能研究[J]. J4, 2005, 39(8): 1243-1246.
[13] 王文军 朱向荣 方鹏飞. 纳米硅粉水泥土固化机理研究[J]. J4, 2005, 39(1): 148-153.