Please wait a minute...
浙江大学学报(工学版)
化学工程、环境工程     
非碳化聚合物两种热流吸收模式热解机理
龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋
1.南京工业大学 安全科学与工程学院,江苏 南京 211816; 
2.纽黑文大学 火灾科学系,美国 康涅狄格州 西黑文市 06516;
3.中南大学 消防工程系,湖南 长沙 410075
Mechanism of non-charring polymer thermal degradation involving two types of heat flux absorption modes
GONG Jun-hui, CHEN Yi-xuan, WANG Zhi-rong, JIANG Jun-cheng, LI Jing, ZHOU Yang
1. College of Safety Science and Engineering, Nanjing Tech University, Nanjing 211816, China; 
2. Department of Fire Science, University of New Haven, West Haven 06516, United States; 
3. Department of Fire Protection Engineering, Central South University, Changsha 410075, China
 全文: PDF(3019 KB)   HTML
摘要:

在之前建立的一维热解模型基础上,对抗冲击性聚苯乙烯(HIPS)和丙烯腈-丁二烯-苯乙烯共聚物(ABS)这两种非碳化聚合物材料在外界辐射热流条件下的热解过程进行数值模拟,研究表面吸收和深度吸收这两种文献中用的较多且相对极端的吸收方式对材料热解过程的影响.模拟锥型量热仪氮气气氛下这两种材料的热解过程,模拟和实验对比参数包括质量损失速率、材料内部温度分布、表面和背面温度.结果表明,不同热流吸收模式对HIPS和ABS热解过程的影响机制与之前PMMA的结论类似,即该模型可以用于非碳化聚合物材料在外界恒定热流惰性气氛下热解过程的模拟.

Abstract:

Thermal degradation of two types of non-charring polymers, high impact polystyrene (HIPS) and Acrylonitrile Butadiene Styrene copolymer (ABS), exposed to an external incident heat flux was numerically investigated based on a previously established one dimensional model. The effects of surface and in-depth absorption on the pyrolysis process of HIPS and ABS were extensively employed in literatures. The corresponding cone calorimetry tests in nitrogen atmosphere of these two polymers were simulated. The experimental and numerical results were compared to validate the developed model, including mass loss rate, temperature distribution in condensed phase, top and bottom surface temperature. Results indicate that the influences of absorption mode of incident heat flux on thermal degradation process of HIPS and ABS are similar to the conclusion of PMMA, which implies that the proposed model can be utilized in predicting the pyrolysis of non-charring polymers in inertial atmosphere with constant external incident heat flux.

出版日期: 2017-04-25
CLC:  X 932  
基金资助:

国家自然科学基金资助项目(51506081,51476075,21436006,51376088);江苏省自然科学基金资助项目(BK20150954);中国科大火灾科学国家重点实验室开放课题资助项目(HZ2015-KF09);中国博士后科学基金面上项目(2016M600407).

作者简介: 龚俊辉(1986—),男,讲师,从事聚合物材料热解及火蔓延研究. E-mail: gjh9896@njtech.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

龚俊辉, 陈怡璇, 王志荣, 蒋军成, 李劲, 周洋. 非碳化聚合物两种热流吸收模式热解机理[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2017.04.020.

GONG Jun-hui, CHEN Yi-xuan, WANG Zhi-rong, JIANG Jun-cheng, LI Jing, ZHOU Yang. Mechanism of non-charring polymer thermal degradation involving two types of heat flux absorption modes. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2017.04.020.

[1] LI J, STOLIAROV S I. Measurement of kinetics and thermodynamics of the thermal degradation for non-charring polymers [J]. Combustion and Flame, 2013, 160(7): 1287-1297.
[2] LI J, STOLIAROV S I. Measurement of kinetics and thermodynamics of the thermal degradation for charring polymers [J]. Polymer Degradation and Stability, 2013, 106(7): 2-15.
[3] ISO 5660e1, 1993 Fire tests e reaction to fire e part 1: rate of heat release from building products (cone calorimeter method) [S]. Geneva: ISO, 1993.
[4] ASTME-1354-03, Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter [S]. Philadelphia: ASTM, 2003.
[5] Standard method of test for heat and visible smoke release rates for material and products using an oxygen consumption calorimeter [S]. 1995 Ed. Quincy: National Fire Protection Association, 1997.
[6] British Standard, 476: Fire tests on building materials and structures: Part 15. method for measuring the rate of heat release of products [S]. London: Royal Charter, 1993.
[7] ASTM(E1354), Standard test method for heat and visible smoke release rates for materials and products using an oxygen consumption calorimeter [S]. Greenbelt: Springer, 2007.
[8] HURLEY M J, GOTTUK D T, JR J R H, et al. The SFPE handbook of fire protection engineering [M]. New York: Springer, 2002.
[9] A microscale combustion calorimeter [EB/OL]. 2002-02-09. http:∥www.tc.faa.gov/its/worldpac/techrpt/ar01117.pdf.
[10] ASTM (E2058-09), Standard test methods for measurement of synthetic polymer material flammabilityusing a fire propagation apparatus (FPA) [S]. West Conshohocken: Springer, 2009.
[11] WANG Ya-fei, YANG Li-zhong. Analysis on correlation between the critical ignition energy of thermal-thick materials and the external heat flux [J]. Journal of Applied Fire Science, 2009, 19(2): 169-182.
[12] 周宇鹏.热解挥发份辐射衰减及流动特性对固体可燃物热解及着火影响研究[D]. 合肥:中国科学技术大学,2010.
ZHOU Yu-peng. Research on effect of radiation attenuation and flow characteristic of pyrolysis volatiles on radiant pyrolysis and ignition of solid combustibles [D]. Hefei: University of Science and Technology of China, 2010.
[13] DI BLASI C. Modeling and simulation of combustion processes of charring and non-charring solid fuels [J]. Progress in Energy and Combustion Science,1993,19(1): 71-104.
[14] DI BLASI C, WICHMAN I S. Effects of solid-phase properties on flames spreading over composite materials \[J\]. Combustion and Flame, 1995, 102(3):229-240.
[15] LAUTENBERGER C, FERNANDEZ-PELLO C. Generalized pyrolysis model for combustible solids [J]. Fire Safety Journal, 2009, 44(6): 819-839.
[16] STOLIAROV S I, LYON R E. Thermokinetic model of burning, Federal Aviation Administration Technical Note [R]. Washington DC: Springfield, 2008.
[17] STOLIAROV S I, LEVENTON I T, LYON R E. Two-dimensional model of burning for pyrolyzable solids [J]. Fire and Materials, 2014, 38(3): 391-408.
[18] SAITO K, DELICHATSIOS M A, VENKATESH S, et al. Measurement and evaluation of parameters affecting the preheating and pyrolysis of noncharring materials \[R\]. Clearwater Beach, FL: Elsevier, 1988.
[19] BEAULIEU P A, DEMBS N. Flammability characteristics at applied heat flux levels up to 200 kW/m2 \[J\]. Fire and Materials, 2008, 32(2): 61-86.
[20] JIANG F, DE RIS J L, KHAN M M. Absorption of thermal energy in PMMA by in-depth radiation [J]. Fire Safety Journal, 2009, 44(1): 106112.
[21] LINTERIS G, ZAMMARANO M, WILTHAN B, et al. Absorption and reflection of infrared adiation by polymers in fire-like environments \[J\]. Fire and Materials, 2012, 36(7): 537-553.
[22] LI J, GONG J, STOLIAROV S I. Gasification experiments for pyrolysis model parameterization and validation \[J\]. International Journal of Heat Mass Transfer, 2014, 77(4): 738-744.
[23] STOLIAROV S I, CROWLEY S, LYON R E, et al. Prediction of the burning rates of non-charring polymers [J]. Combustion and Flame, 2009, 156(5):1068-1083.
[24] STOLIAROV S I, CROWLEY S, WALTERS R N, et al. Prediction of the burning rates of charring polymers [J]. Combustion and Flame, 2010,157(11):2024-2034.
[25] LI J, GONG J, STOLIAROV S I. Development of pyrolysis models for charring polymers [J]. Polymer Degradation and Stability, 2015, 115 (6): 138-152.
[26] LINTERIS G T, LYON R E, STOLIAROV S I. Prediction of the gasification rate of thermoplastic polymers in firelike environments [J]. Fire Safety Journal, 2013, 60 (2): 14-24.
[27] 龚俊辉.典型非碳化聚合物材料热解及逆流火蔓延实验和理论研究[D]. 合肥:中国科学技术大学,2014:34-74.
GONG Jun-hui. Experimental and theoretical study on pyrolysis and opposed-flow flame spread of typical noncharring polymers [D]. Hefei: University of Science and Technology of China, 2014: 34-74.
[28] BAL N, REIN G. Numerical investigation of the ignition delay time of a translucent solid at high radiant heat fluxes [J]. Combustion and Flame, 2011,158 (6): 1109-1116.
[29] STAGGS J. The effects of gas-phase and in-depth radiation absorption on ignition and steady burning rate of PMMA [J]. Combustion and Flame, 2014, 161 (12): 3229-3236.
[30] DELICHATSIOS M A, ZHANG J. An alternative way for the ignition times for solids with radiation absorption in-depth by simple asymptotic solutions [J]. Fire and Materials, 2012, 36 (1): 41-47.
[31] INCROPERA F P. Fundamentals of heat and mass transfer [M]. Hoboken: Wiley, 1981: 139-162.

[1] 龚俊辉, 陈怡璇, 李劲, 周洋. PMMA表面与深度吸收热解过程数值模拟[J]. 浙江大学学报(工学版), 2016, 50(10): 1879-1888.