Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1684-1693    DOI: 10.3785/j.issn.1008-973X.2021.09.010
土木工程、水利工程     
道面单向约束作用对飞机振动响应的影响
凌道盛1,2(),盛文军1,黄博1,*(),赵云3
1. 浙江大学 岩土工程研究所,软弱土与环境土工教育部重点实验室,浙江 杭州 310058
2. 浙大宁波理工学院土木建筑工程学院,浙江 宁波 315100
3. 河南工业大学 土木工程学院,河南 郑州 450001
Influence of pavement unidirectional constraint on aircraft vibration response
Dao-sheng LING1,2(),Wen-jun SHENG1,Bo HUANG1,*(),Yun ZHAO3
1. Institute of Geotechnical Engineering, Key Laboratory of Soft Soils and Geoenvironmental Engineering, Ministry of Education, Zhejiang University, Hangzhou 310058, China
2. School of Civil Engineering and Architecture, NingboTech University, Ningbo 315100, China
3. College of Civil Engineering and Architecture, Henan University of Technology, Zhengzhou 450001, China
 全文: PDF(1802 KB)   HTML
摘要:

基于B737-800机型,建立道面单向约束的飞机六自由度模型,分别进行单个和随机不平整激励道面上飞机滑跑仿真计算. 结果表明:单个不平整激励输入下,机体振动响应与道面变形模式相关,不再随道面变形波长、幅值及飞机滑跑速度单调变化,与不考虑道面单向约束作用时有显著差异,且不同滑跑速度的敏感波段不相同. 在随机不平整激励输入下,机轮脱离道面时间随道面平整度劣化而增加. 当跑道国际平整指数为3 m/km时,飞机以超过70 m/s的速度滑跑,机轮可能脱离道面的滑跑距离占比超过1/4. 飞机振动响应主频变低、高频振动大幅衰减,振动能量向更低频集中. 在评价机场跑道平整度的2个指标中,机体质心竖向最大加速度相较于不考虑单向约束作用时有所增大,竖向加速度均方根因机轮脱离道面削弱负向加速度响应有所减小.

关键词: 机场道面单向约束作用动力响应分析平整度竖向加速度    
Abstract:

A six-degree-of-freedom model of the aircraft with unidirectional constraint on pavement was established based on the B737-800 aircraft. The simulation calculation of aircraft taxiing were carried out on the pavement with single and stochastic uneven excitation respectively. Results show that, under the single uneven excitation input, the vibration response of the aircraft no longer changes monotonously with the wavelength and amplitude of the pavement deformation and the aircraft taxiing speed but the deformation model of the pavement, which is significantly different from that without considering the unidirectional constraint of pavement. The sensitive band of different taxiing speed is not the same. Under the stochastic uneven excitation input, the time when the wheels disengage from the pavement increases with the deterioration of pavement roughness. When the international roughness index of pavement is 3 m/km and the aircraft taxis at a speed of more than 70 m/s, and the taxing distance of the wheel separated from the pavement accounts for more than 1/4. The main frequency of the aircraft vibration response becomes lower, and the high-frequency vibration is greatly attenuated, and the vibration energy is concentrated to lower frequency. Between the two indexes for evaluating the roughness of pavement, the vertical maximum acceleration of the aircraft’s center of mass increases compared with that without considering the unidirectional constraint, while the root mean square of the vertical acceleration decreases because the downward acceleration response is weakened by the departure of the wheels from the pavement.

Key words: airport pavement    unidirectional constraint    dynamic response analysis    roughness    vertical acceleration
收稿日期: 2020-09-25 出版日期: 2021-10-20
CLC:  U 416  
基金资助: 国家重点基础研究发展计划资助项目(2014CB047005);国家自然科学基金资助项目 (51988101)
通讯作者: 黄博     E-mail: dsling@zju.edu.cn;cehuangbo@zju.edu.cn
作者简介: 凌道盛(1968—),男,教授,博导,从事计算土力学与实验土力学研究. orcid.org/0000-0002-0604-1175. E-mail: dsling@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
凌道盛
盛文军
黄博
赵云

引用本文:

凌道盛,盛文军,黄博,赵云. 道面单向约束作用对飞机振动响应的影响[J]. 浙江大学学报(工学版), 2021, 55(9): 1684-1693.

Dao-sheng LING,Wen-jun SHENG,Bo HUANG,Yun ZHAO. Influence of pavement unidirectional constraint on aircraft vibration response. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1684-1693.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.010        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1684

图 1  B737-800型飞机
图 2  B737-800型飞机的六自由度模型
参数 符号 单位 数值
机身质量 m0 kg 73 500
前起落架(含机轮)质量 m1 kg 256
主起落架(含机轮)质量 m2、m3 kg 1 146
机体绕质心俯仰转动惯量 IY kg·m2 3 660 000
机体绕质心横滚转动惯量 IX kg·m2 2 610 000
前起落架悬架刚度系数 k11 N/m 950 000
主起落架悬架刚度系数 k21、k31 N/m 2 760 000
前起落架轮胎刚度系数 k12 N/m 1780 000
主起落架轮胎刚度系数 k22、k32 N/m 12 800 000
前起落架悬架阻尼系数 C11 N·s/m 18 100
主起落架悬架阻尼系数 C21、C31 N·s/m 108 000
主起落架连线与对称轴
的交点到质心的距离
l1 m 1.15
前起落架与质心的距离 l2 m 14.45
主起落架到对称轴的距离 l3、l4 m 2.86
驾驶舱与质心的距离 l5 m 16.05
翼展面积 w m2 124.60
升力系数 C1 / 1.36
空气密度 ρ kg/m3 1.293
表 1  B737-800型飞机的模型计算参数
工况 机轮与道面接触形式 K(2,2) K(3,3) K(4,4) F(2,1) F(3,1) F(4,1)
1 三组起落架机轮全着地 K11+K12 K21+K22 K31+K32 ?m1g+K12h1(x) ?m2g+K22h2(x) m3g+K32h3(x)
2 前起落架机轮着地,两主起落架机轮离地 K11+K12 K21 K31 ?m1g+K12h1(x) ?m2g ?m3g
3 前起落架机轮离地,主起落架机轮着地 K11 K21+K22 K31+K32 ?m1g ?m2g+K22h2(x) m3g+K32h3(x)
4 前起落架和右主起落架机轮着地,左主起落架机轮离地 K11+K12 K21+K22 K31 ?m1g+K12h1(x) ?m2g+K22h2(x) ?m3g
5 前起落架和左主起落架机轮着地,右主起落架机轮离地 K11+K12 K21 K31+K32 ?m1g+K12h1(x) ?m2g m3g+K32h3(x)
6 三组起落架机轮全离地 K11 K21 K31 ?m1g ?m2g ?m3g
表 2  不同机轮−道面接触形式下Ki与FiX中相关元素组合
图 3  单个隆起变形模式下道面、质心和主起落架机轮的位移曲线
图 4  沉降变形模式下主起落架机轮位移曲线
图 5  隆起变形模式下主起落架机轮位移曲线
图 6  未考虑单向约束时机体质心竖向加速度时程曲线
图 7  考虑单向约束时机体质心竖向加速度时程曲线
图 8  长波长、沉降变形模式下主起落架机轮位移曲线及质心竖向加速度时程曲线
图 9  长波长、隆起变形模式下主起落架机轮位移曲线及质心竖向加速度时程曲线
图 10  道面沉降变形多因素耦合作用下amax变化规律
图 11  道面隆起变形多因素耦合作用下amax变化规律
图 12  飞机在随机道面滑跑时主起落架机轮位移曲线、质心加速度时程及功率谱曲线
IRI/(m·km?1) 道面评价[1]
(水泥混凝土道面)
Tr/%
1 0.01~0.62
2 11.11~13.67
3 28.72~39.81
4 44.42~50.04
5 50.44~56.10
表 3  飞机在不同IRI道面上滑跑时机轮Tr
图 13  考虑和不考虑单向约束时amax、arms随IRI的变化
1 中国民用航空局. 民用机场道面评价管理技术规范: MH/T 5024—2019[S]. 北京: 中国民航出版社, 2019: 26-28.
2 EMERY S, HEFER A, HORAK E. Roughness of runways and significance of appropriate specifications and measurement [C]// 11th Conference on Asphalt Pavements for Southern Africa. Sun City: CAPSA, 2015: 10.
3 CARDOSO S H Aircraft-based pavement surface roughness assessment[J]. Transportation Research Record Journal of the Transportation Research Board, 2007, 2007 (1): 104- 110
doi: 10.3141/2007-13
4 程国勇, 郭稳厚, 雷亚伟 机场道面平整度评价技术进展及发展方向[J]. 中国民航大学学报, 2016, 34 (2): 36- 41
CHENG Guo-yong, GUO Wen-hou, LEI Ya-wei Progress and developing trend of airport pavement roughness evaluation technology[J]. Journal of Civil Aviation University of China, 2016, 34 (2): 36- 41
doi: 10.3969/j.issn.1674-5590.2016.02.009
5 GERVAIS E L. Runway roughness measurement, quantification and application: the Boeing approach [C]// Aircraft/pavement Interaction. New York: ASCE, 2015.
6 王广德, 韩黎明, 柴震林, 等 机场跑道地基差异沉降控制标准研究[J]. 工程地质学报, 2014, 22 (Suppl. 1): 498- 505
WANG Guang-de, HAN Li-ming, CHAI Zhen-lin, et al Research about foundation differential settlement controlling standards for airport runway[J]. Journal of Engineering Geology, 2014, 22 (Suppl. 1): 498- 505
7 凌建明, 刘诗福, 李萌, 等 波音平整度评价方法的局限性分析[J]. 同济大学学报:自然科学版, 2018, 46 (8): 1035- 1041
LING Jian-ming, LIU Shi-fu, LI Meng, et al Application limitation of Boeing bump to evaluation runway roughness[J]. Journal of Tongji University: Natural, Science, 2018, 46 (8): 1035- 1041
8 凌建明, 刘诗福, 袁捷, 等 采用IRI评价机场道面平整度的适用性[J]. 交通运输工程学报, 2017, 17 (1): 20- 27
LING Jian-ming, LIU Shi-fu, YUAN Jie, et al Applicability of IRI based evaluation of airport pavement roughness[J]. Journal of Traffic and Transportation Engineering, 2017, 17 (1): 20- 27
doi: 10.3969/j.issn.1671-1637.2017.01.003
9 GERARDI A G. Digital simulation of flexible aircraft response to symmetrical and asymmetrical runway roughness [R/OL]. [2021-08-22]. https://www.readcube.com/articles/10.21236%2Fada053588.
10 凌建明, 刘诗福, 袁捷, 等 不平整激励下机场道面和公路路面平整度评价综合分析[J]. 同济大学学报:自然科学版, 2017, 45 (4): 519- 526
LING Jian-ming, LIU Shi-fu, YUAN Jie, et al Comprehensive analysis of pavement roughness evaluation for airport and road with different roughness excitation[J]. Journal of Tongji University: Natural Science, 2017, 45 (4): 519- 526
11 KANAZAWA H, SU K, NOGUCHI T, et al Evaluation of airport runway pavement based on pilots' subjective judgement[J]. International Journal of Pavement Engineering, 2010, 11 (3): 189- 195
doi: 10.1080/10298430903311792
12 蔡宛彤, 种小雷, 王海服, 等 基于ADAMS的机场道面平整度评价方法[J]. 空军工程大学学报:自然科学版, 2014, 15 (1): 15- 19
CAI Wan-tong, CHONG Xiao-lei, WANG Hai-fu, et al An evaluation method for roughness of airport pavement based on ADAMS[J]. Journal of Air Force Engineering University: Natural Science Edition, 2014, 15 (1): 15- 19
13 DURÁN J B C, JÚNIOR J L F Airport pavement roughness evaluation based on cockpit and center of gravity vertical accelerations[J]. Transportes, 2020, 28 (1): 147- 159
doi: 10.14295/transportes.v28i1.1932
14 LOPRENCIPE G, ZOCCALI P Comparison of methods for evaluating airport pavement roughness[J]. International Journal of Pavement Engineering, 2019, 20 (7): 782- 791
doi: 10.1080/10298436.2017.1345554
15 ŽURAULIS V, LEVULYTE L, SOKOLOVSKIJ E The impact of road roughness on the duration of contact between a vehicle wheel and road surface[J]. Transport, 2014, 29 (4): 431- 439
doi: 10.3846/16484142.2014.984330
16 BOEING. 737 Airplane characteristics for airport planning [R/OL].[2021-08-22]. https://www.boeing.com/resources/boeingdotcom/commercial/airports/acaps/737_RevA.pdf.
17 罗汀, 刘引, 韩黎明, 等 高填方机场工后沉降监测及数据分析[J]. 中国民航大学学报, 2017, 35 (3): 27- 32
LUO Ting, LIU Yin, HAN Li-ming, et al Post-construction settlement monitoring and data analysis of high filling engineering of airport[J]. Journal of Civil Aviation University of China, 2017, 35 (3): 27- 32
doi: 10.3969/j.issn.1674-5590.2017.03.007
18 胡春飞, 韩卿爱, 吕耀志 机场跑道破损坑槽对飞机滑跑动力的影响[J]. 重庆交通大学学报:自然科学版, 2013, 32 (4): 717- 724
HU Chun-fei, HAN Qing-ai, LV Yao-zhi Dynamic influence of distress runway pothole on aircraft running[J]. Journal of Chongqing Jiaotong University: Natural Science, 2013, 32 (4): 717- 724
19 BIAN X, CHEN Y, YE X. Environmental Vibrations and Transportation Geodynamics [M]// ZHAO Y, LING D, HUANG B. Effects of inhomogeneous subgrade settlement to aircraft vibration and its control standard. Singapore: Springer, 2018: 713-726.
20 程国勇, 郭稳厚, 雷亚伟 基于MATLAB的机场道面不平度模拟技术研究[J]. 公路工程, 2016, 41 (3): 5- 7
CHENG Guo-yong, GUO Wen-hou, LEI Yawei Research of airport pavement roughness simulation technology based on Matlab[J]. Highway Engineering, 2016, 41 (3): 5- 7
doi: 10.3969/j.issn.1674-0610.2016.03.002
21 MORRIS G J, HALL A W. Recent studies of runway roughness [C]// NASA Conference on Aircraft Operating Problems. Hampton: NASA Special Publication, 1965: 1-7.
22 盖利庆. 军用机场跑道表面平整度分析及处理[D]. 南京: 东南大学, 2003: 11.
GAI Li-qing. Analysis and treatment of military airfield surface smoothness [D]. Nanjing: Southeast University, 2003: 11.
[1] 胡成宝, 王云岗, 凌道盛. 瑞利阻尼物理本质及参数对动力响应的影响[J]. 浙江大学学报(工学版), 2017, 51(7): 1284-1290.
[2] 王直民 张土乔 吴小刚. 不平整路面上的车辆等效动载系数[J]. J4, 2007, 41(6): 1007-1011.