Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (9): 1660-1667    DOI: 10.3785/j.issn.1008-973X.2021.09.007
机械工程、能源工程     
基于循环平稳分析的推进泵流致噪声特性研究
李倩1(),梁宁1,童威棋1,徐海平2,曹琳琳1,*(),吴大转1,3
1. 浙江大学 能源工程学院,浙江 杭州 310027
2. 西安精密机械研究所昆明分部,云南 昆明 650032
3. 浙江大学 流体动力与机电系统国家重点实验室,浙江 杭州 310027
Research on flow-induced noise properties of waterjet pump based on cyclostationary method
Qian LI1(),Ning LIANG1,Wei-qi TONG1,Hai-ping Xu2,Lin-lin CAO1,*(),Da-zhuan WU1,3
1. College of Energy Engineering, Zhejiang University, Hangzhou 310027, China
2. Kunming Branch of Xi'an Precision Machinery Research Institute, Kunming 650032, China
3. State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1899 KB)   HTML
摘要:

为了深入理解推进泵流致噪声激励源机理,为推进泵低噪声设计提供支撑,以某双级推进泵为对象,基于其多工况下的辐射噪声实测结果,围绕推进泵流致噪声的调制机理及流致噪声源的提取方法展开研究. 在空泡水洞中测量该双级推进泵的辐射噪声,采用循环平稳分析方法,进行噪声解调分析与流致噪声源特征频率提取;开展该双级推进泵内流场的非定常数值模拟,分析其瞬态内流场分布特性与三向激振力特性. 联合信号处理结果与内流场模拟结果,研究推进泵流致噪声源的关键特性与形成原理. 结果表明,导叶是影响双级推进泵辐射噪声特性的关键因素,导叶调制线谱的强度与推进泵的来流条件、运行工况密切相关,叶轮与导叶的匹配性设计对推进泵振动噪声控制起关键作用.

关键词: 推进泵循环平稳流致噪声双级泵空泡水洞试验    
Abstract:

To deeply understand the mechanism of flow induced noise excitation source of waterjet pump and to support the low-noise design of waterjet pump, the acoustic performance of a two-stage propulsion pump was researched. Based on the measured radiated noise under multiple rotational speeds, the modulation mechanism of flow induced noise of this waterjet pump and the extraction method of flow induced noise source were studied. The radiated noise of this two-stage waterjet pump was measured in a cavitation tunnel, and the cyclostationary analysis was conducted to demodulate and extract the characteristic frequency of the flow-induced noise source. The unsteady numerical simulation of the internal flow field of the two-stage propulsion pump was carried out to analyze the distribution characteristics of the transient internal flow field and the characteristics of three-dimensional exciting force. Combining the signal processing results with the internal flow field simulation results, the key characteristics and formation principle of the flow induced noise source of the propulsion pump were studied. Results show that the guide vane plays a key role in the radiated noise characteristics of the two-stage waterjet pump, and the modulation intensity is decided by the incoming flow conditions and operating conditions of the waterjet pump. The matching design of the impeller and guide vane takes a decisive position in the noise and vibration control of waterjet pump.

Key words: waterjet pump    cyclostationarity    flow-induced noise    two-stage pump    cavitation tunnel experiment
收稿日期: 2020-07-14 出版日期: 2021-10-20
CLC:  TU 134  
通讯作者: 曹琳琳     E-mail: 11727062@zju.edu.cn;caolinlin@zju.edu.cn
作者简介: 李倩(1996—),女,硕士生,从事推进泵性能分析及信号处理研究. orcid.org/0000-0002-3286-5098. E-mail: 11727062@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
李倩
梁宁
童威棋
徐海平
曹琳琳
吴大转

引用本文:

李倩,梁宁,童威棋,徐海平,曹琳琳,吴大转. 基于循环平稳分析的推进泵流致噪声特性研究[J]. 浙江大学学报(工学版), 2021, 55(9): 1660-1667.

Qian LI,Ning LIANG,Wei-qi TONG,Hai-ping Xu,Lin-lin CAO,Da-zhuan WU. Research on flow-induced noise properties of waterjet pump based on cyclostationary method. Journal of ZheJiang University (Engineering Science), 2021, 55(9): 1660-1667.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.09.007        https://www.zjujournals.com/eng/CN/Y2021/V55/I9/1660

图 1  双级推进泵模型样机
参数 数值 单位
叶轮直径 200 mm
设计转速 970 rpm
前置叶轮叶片 5
导叶叶片 11
后置叶轮叶片 6
旋向 右旋
表 1  双级推进泵特征参数
图 2  计算域及边界条件
图 3  双级推进泵表面网格
图 4  计算域体网格
图 5  双级推进泵敞水性能试验与CFD模拟结果对比
图 6  双级推进泵辐射噪声信号频谱分析
图 7  循环平稳分析噪声信号(J=0.5)
图 8  循环平稳分析噪声信号(J=1.0)
图 9  循环平稳分析噪声信号(J=1.5)
图 10  双级推进泵各部件轴向激励力
图 11  双级推进泵内压力分布
1 KOWALCZYK S, FELICJANCIK J Numerical and experimental propeller noise investigations[J]. Ocean Engineering, 2016, 120: 108- 115
doi: 10.1016/j.oceaneng.2016.01.032
2 TREBBLE W Investigation of the aerodynamic performance and noise characteristics of a 1/5th scale model of the Dowty Rotol R212 propeller[J]. The Aeronautical Journal, 2016, 91 (905): 225- 236
3 YAN P, CHU N, WU D, et al Computational fluid dynamics-based pump redesign to improve efficiency and decrease unsteady radial forces[J]. Journal of Fluids Engineering, 2017, 139 (1): 011101
doi: 10.1115/1.4034365
4 YAN P, LI S, YANG S, et al Effect of stacking conditions on performance of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2017, 31 (2): 689- 696
doi: 10.1007/s12206-017-0120-6
5 史广智, 胡均川 舰船噪声调制谱谐波族结构特性理论分析[J]. 声学学报, 2007, 32 (1): 21- 27
SHI Guang-zhi, HU Jun-chuan Theoretical analysis of the structure law of ship radiated-noise demodulation spectrum harmonic clan feature[J]. Acta of Acustica, 2007, 32 (1): 21- 27
6 ZENG S, DU X M, FAN W Theoretical analysis and experimental research on non-cavitation noise modulation mechanism of underwater counter-rotation propeller[J]. Journal of Acoustics, 2018, 37 (2): 129- 145
7 苏永生, 王永生, 杨哲辉 基于解调技术的喷泵空化特征提取方法研究[J]. 武汉理工大学学报:交通科学与工程版, 2013, 37 (6): 1180- 1183
SU Yong-sheng, WANG Yong-sheng, YANG Zhe-hui Research on extraction method of jet pump cavitation feature based on demodulation technology[J]. Journal of Wuhan University of Technology:Transportation Science and Engineering Edition, 2013, 37 (6): 1180- 1183
doi: 10.3963/j.issn.2095-3844.2013.06.011
8 陈进, 董广明. 机械故障特征提取的循环平稳理论及方法[M]. 上海: 上海交通大学出版社, 2013.
9 ZHANG X, MIAO Q, ZHANG H, et al A parameter-adaptive VMD method based on grasshopper optimization algorithm to analyze vibration signals from rotating machinery[J]. Mechanical Systems and Signal Processing, 2018, 108: 58- 72
doi: 10.1016/j.ymssp.2017.11.029
10 姜鸣, 陈进 循环自相关函数的解调性能分析[J]. 上海交通大学学报, 2002, 36 (6): 799- 802
JIANG Ming, CHEN Jin Demodulation performance analysis for cyclic autocorrelation function[J]. Journal of Shanghai Jiaotong University, 2002, 36 (6): 799- 802
doi: 10.3321/j.issn:1006-2467.2002.06.015
11 ANTONI J Cyclostationarity by examples[J]. Mechanical Systems and Signal Processing, 2009, 23 (4): 987- 1036
doi: 10.1016/j.ymssp.2008.10.010
12 LI S, CHU N, YAN P, et al Cyclostationary approach to detect flow-induced effects on vibration signals from centrifugal pumps[J]. Mechanical Systems and Signal Processing, 2019, 114: 275- 289
doi: 10.1016/j.ymssp.2018.05.027
13 CHEONG C, JOSEPH P Cyclostationary spectral analysis for the measurement and prediction of wind turbine swishing noise[J]. Journal of Sound and Vibration, 2014, 333 (14): 3153- 3176
doi: 10.1016/j.jsv.2014.02.031
14 POIRIER M, GAGNON M, TAHAN A, et al Extrapolation of dynamic load behaviour on hydroelectric turbine blades with cyclostationary modelling[J]. Mechanical Systems and Signal Processing, 2017, 82: 193- 205
doi: 10.1016/j.ymssp.2016.05.018
15 ANTONI J, HANSON D Detection of surface ships from interception of cyclostationary signature with the cyclic modulation coherence[J]. IEEE Journal of Oceanic Engineering, 2012, 37 (3): 478- 493
doi: 10.1109/JOE.2012.2195852
16 ANTONI J, XIN G, HAMZAOUI N Fast computation of the spectral correlation[J]. Mechanical Systems and Signal Processing, 2017, 92: 248- 277
doi: 10.1016/j.ymssp.2017.01.011
17 曾赛, 杜选民, 范威 水下对转桨非空化线谱噪声分析与数值研究[J]. 兵工学报, 2015, 36 (6): 1052- 1060
ZENG Sai, DU Xuan-min, FAN Wei Numerical simulation and analysis non-cavitation noise line-spectrum frequency of underwater counter-rotation propeller[J]. Acta Armamentarii, 2015, 36 (6): 1052- 1060
doi: 10.3969/j.issn.1000-1093.2015.06.013
[1] 张玙,刘益才. 小型制冷系统两相流致噪声研究进展[J]. 浙江大学学报(工学版), 2021, 55(4): 775-792.