| 信息与电子工程 |
|
|
|
|
| 基于改进旋转因子的高性能FFT硬件设计 |
骆阳( ),张为*( ) |
| 天津大学 微电子学院,天津 300072 |
|
| Hardware efficient FFT design based on improved rotation factor |
Yang LUO( ),Wei ZHANG*( ) |
| School of Microelectronic, Tianjin University, Tianjin 300072, China |
| 1 |
GROGINSKY H L, WORKS G A A pipeline fast Fourier transform[J]. IEEE Transactions on Computers, 1970, 19 (11): 1015- 1019
|
| 2 |
HE S, TORKELSON M. A new approach to pipeline FFT processor[C]// International Parallel Processing Symposium. Hawaii: IEEE, 1996: 766-770.
|
| 3 |
GARRIDO M, QURESHI F, TAKALA J, et al. Hardware architectures for the fast Fourier transform[M]//SHUVRA S, LEUPERS R, TAKALA J, et al. Handbook of signal processing systems. Switzerland: Springer, 2018: 613-648.
|
| 4 |
QURESHI F. Optimization of rotations in FFTs[D]. Linköping: Linköping University, 2012.
|
| 5 |
GARRIDO M, HUANG S, CHEN S, et al The serial commutator FFT[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2016, 63 (10): 974- 978
doi: 10.1109/TCSII.2016.2538119
|
| 6 |
INGEMARSSON C, KALLSTROM P, GUSTAFSSON O. Using DSP block pre-adders in pipeline SDF FFT implementations in contemporary FPGAs[C]// 22nd International Conference on Field Programmable Logic and Applications. Oslo: IEEE, 2012: 71-74.
|
| 7 |
INGEMARSSON C, GUSTAFSSON O SFF: the single-stream FPGA-optimized feedforward FFT hardware architecture[J]. Journal of Signal Processing Systems, 2018, 90 (11): 1583- 1592
doi: 10.1007/s11265-018-1370-y
|
| 8 |
MA Z G, YIN X B, YU F A novel memory-based FFT architecture for real-valued signals based on a radix-2 decimation-in-frequency algorithm[J]. IEEE Transactions on Circuits and Systems II: Express Briefs, 2015, 62 (9): 876- 880
doi: 10.1109/TCSII.2015.2435522
|
| 9 |
TANG A M, YU L, HAN F J, et al. CORDIC-based FFT real-time processing design and FPGA implementation[C]// 12th International Colloquium on Signal Processing and its Applications. Malacca: IEEE, 2016: 233-236.
|
| 10 |
SHI J Y, TIAN Y H, WANG M X, et al. A novel design of 1024-point pipelined FFT processor based on Cordic algorithm[C]// 2nd International Conference on Intelligent System Design and Engineering Application. Sanya: IEEE, 2012: 80-83.
|
| 11 |
MANKAR A, PRASAD N, DAS A D, et al Multiplier: less VLSI architectures for radix‐22 folded pipelined complex FFT core [J]. International Journal of Circuit Theory and Applications, 2015, 43 (11): 1743- 1758
doi: 10.1002/cta.2038
|
| 12 |
ZHANG J F, LIU H Z, CHEN T, et al Enhanced hardware efficient FFT processor based on adaptive recoding CORDIC[J]. Electronics and Electrical Engineering, 2013, 19 (4): 97- 103
|
| 13 |
MAHDAVI H, TIMARCHI S Area-time-power efficient FFT architectures based on binary-signed-digit CORDIC[J]. IEEE Transactions on Circuits and Systems I: Regular Papers, 2019, 66 (10): 3874- 3881
doi: 10.1109/TCSI.2019.2922988
|
| 14 |
MEYER-BASE U, MEYER-BASE A, HILBERG W. Coordinate rotation digital computer (CORDIC) synthesis for FPGA[C]// International Workshop on Field-programmable Logic. Berlin: Springer, 1994: 397–408.
|
| 15 |
VORONENKO Y, PUSCHEL M Multiplierless multiple constant multiplication[J]. ACM Transactions on Algorithms, 2007, 3 (2): 11- 49
doi: 10.1145/1240233.1240234
|
| 16 |
KUMM M, HARDIECK M, WILLKOMM J, et al. Multiple constant multiplication with ternary adders[C]// 23rd International Conference on Field Programmable Logic and Applications. Porto: IEEE, 2013: 1-8.
|
| 17 |
KUMM M. Multiple constant multiplication optimizations for programmable gate arrays [M]. Wiesbaden: Springer, 2016.
|
| 18 |
EHLIAR A. Optimizing Xilinx designs through primitive instantiation[C]// 7th FPGA World Conference. Copenhagen: ACM, 2010: 20-27.
|
| 19 |
MA Y K, LIANG H H. Implementation of a pipeline large-FFT processor based on the FPGA[C]// International Conference in Communications, Signal Processing and Systems. Harbin: Springer, 2017: 638-644.
|
| 20 |
NGUYEN H N, KHAN S A, KIM C H, et al A high-performance, resource-efficient, reconfigurable parallel-pipelined FFT processor for FPGA platforms[J]. Microprocessors and Microsystems, 2018, 60: 96- 106
doi: 10.1016/j.micpro.2018.04.003
|
| 21 |
VALENCIA D, ALIMOHAMMAD A Compact and high-throughput parameterizable architectures for memory-based FFT algorithms[J]. IET Circuits, Devices and Systems, 2019, 13 (5): 696- 703
doi: 10.1049/iet-cds.2018.5556
|
| 22 |
WANG Z, LIU X, HE B, et al A combined SDC-SDF architecture for normal I/O pipelined radix-2 FFT[J]. IEEE Transactions on Very Large Scale Integration Systems, 2015, 23 (5): 973- 977
doi: 10.1109/TVLSI.2014.2319335
|
| 23 |
NGUYEN H N, KHAN S A, KIM C H, et al A pipelined FFT processor using an optimal hybrid rotation scheme for complex multiplication: design, FPGA implementation and analysis[J]. Electronics, 2018, 7 (8): 137
doi: 10.3390/electronics7080137
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
| |
Shared |
|
|
|
|
| |
Discussed |
|
|
|
|