Please wait a minute...
浙江大学学报(工学版)
土木工程     
雷暴风三维脉动风速场数值模拟
楼文娟,王嘉伟,杨伦,陈勇
浙江大学 结构工程研究所,浙江 杭州 310058
Simulation of three-dimensional fluctuating wind velocity field #br# upon thunderstorm downburst
LOU Wen-juan, WANG Jia-wei, YANG Lun, CHEN Yong
Institute of Structural Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(2400 KB)   HTML
摘要:

基于壁面射流模型,将雷诺应力模型(RSM)计算得出的Reynolds应力张量引入Letchford谱和Panofsky谱,利用大涡模拟(LES)计算得出的脉动风速结果对其进行验算.对偏差较大的风谱函数进行进一步修正,得到与LES计算结果较吻合的自功率谱函数.结合随机流场生成技术和快速傅里叶变换技术,提出满足不可压缩条件和点相干函数的适用于雷暴风三维脉动风速场的高效的数值模拟方法.为了验证该方法的合理性,选取流场中水平径向风速较大处在高度方向上逐点生成三维脉动风速,对每个点的模拟结果从自功率谱函数和时间相关函数两方面进行验证.模拟值与目标值的吻合效果良好,说明采用提出的方法可以高效、准确地模拟出雷暴风的三维脉动风场.

Abstract:

Based upon the impinging jet model, the results of Reynolds stress calculated by Reynolds stress model (RSM) were introduced into the spectrum functions proposed by Letchford and Panofsky respectively. With the three-dimensional fluctuating wind velocity field of the thunderstorm downburst obtained from large eddy simulation (LES), both spectrums were validated, and the one which differs a lot was further revised. In combination with random flow generation technique and fast Fourier transform technique, an efficient method for the simulation of three-dimensional fluctuating wind velocity of the thunderstorm downburst was developed, which satisfied the incompressible condition and coherence function. In order to verify its accuracy, some typical points in a specific radial area of the downburst wind field with relatively high horizontal radial wind velocities were chosen. The simulation method mentioned above was employed to get the three-dimensional fluctuating wind velocities point-by-point along the height direction, whose auto-power spectrum functions and time coherence functions were further checked. The results match well with the target values, which implies that the method can simulate the three-dimensional fluctuating wind velocity field of downburst efficiently and precisely.

出版日期: 2014-08-04
:  TU 312  
基金资助:

国家自然科学基金资助项目(51178424)

作者简介: 楼文娟(1963-),女,教授,博导,从事结构风工程的研究. E-mail: louwj@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

楼文娟,王嘉伟,杨伦,陈勇. 雷暴风三维脉动风速场数值模拟[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2014.07.004.

LOU Wen-juan, WANG Jia-wei, YANG Lun, CHEN Yong. Simulation of three-dimensional fluctuating wind velocity field #br# upon thunderstorm downburst. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2014.07.004.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.07.004        http://www.zjujournals.com/eng/CN/Y2014/V48/I7/1162

1] HOLMES J D. Modeling of extreme thunderstorm winds for wind loading of structures and risk assessment [C]∥Wind Engineering into 21st Century, Proceedings of 10th International Conference on Wind Engineering. Copenhagen: [s.n.], 1999: 1409-1415.
[2] 孙凌峰,郭学良,孙立谭,等. 武汉“6·22”空难下击暴流的三维数值模拟研究[J]. 大气科学,2003,27(6):1077-1092.
SUN Ling-feng, GUO Xue-liang, SUN Li-tan, et al. A numerical study of the airplane disaster-producing microburst on 22 June 2000 in Wuhan [J]. Chinese Journal of Atmospheric Sciences, 2003, 27(6): 1077-1092.
[3] WILSON J W, WAKIMOTO R M. The discovery of the downburst: T.T.Fujitas contribution [J]. Bulletin of the American Meteorological Society, 2001, 82(1): 49-62.
[4] KNUPP K R. Numerical simulation of low-level downdraft initiation within precipitating, cumulonimbi: some preliminary results [J]. Monthly Weather Review, 1989,117:1517-1529.
[5] STRAKA J M, ANDERSON J R. Numerical simulations of microburst producing storms: some results from storms observed during COHMEX [J]. Journal of the Atmospheric Sciences, 1993, 50: 1329-1348.
[6] PROCTOR F H, BOWLES R L. Three-dimensional simulation of the Denver 11 July 1988 microburst-producing storm [J]. Meteorology and Atmospheric Physics, 1992, 49: 107-124.
[7] LIN E W, ORF L G, SAVORY E, et al. Proposed large-scale modeling of the transient features of a downburst outflow [J]. Wind and Structure, 2007, 10: 315-346.
[8] VERMEIRE B C, ORF L G, SAVORY E. Improved modeling of downburst outflows for wind engineering applications using a cooling source approach [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2011a, 99(8): 801-814.
[9] MASON M S, WOOD G S, FLETCHER D F. Numerical simulation of downburst winds [J].Journal of Wind Engineering and Industrial Aerodynamics, 2009, 97(11/12): 523-539.
[10] HJELMFELT M R. Structure and life cycle of microburst outflows observed in Colorado [J]. Journal of Applied Meteorology, 1988, 27(8): 900-927.
[11] SPILLANE K T. On the microburst family. Australian wind engineering society [C]∥ Third Workshop on Wind Engineering.Brisbane:\[s.n.\],1993.
[12] HOLMES J D, OLIVER S E. An empirical model of a downburst [J]. Engineering Structures, 2000, 22(9):1167-1172.
[13] WOOD G S, KWOKA K C S, MOTTERAMB N A, et al. Physical and numerical modeling of thunderstorm downbursts [J].Journal of Wind Engineering and Industrial Aerodynamics, 2001, 89(6): 535-552.
[14] MASON M S, LETCHFORD C W, JAMES D L. Pulsed wall jet simulation of a stationary thunderstorm downburst, part A: physical structure and flow field characterization [J]. Journal of Wind Engineering and Industrial Aerodynamic, 2005, 93(7): 557-580.
[15] CHEN L Z, LETCHFORD C W. A deterministic-stochastic hybrid model of downbursts and its impact on a cantilevered structure [J]. Engineering Structure, 2004, 26: 619-629.
[16] 刘锡良, 周颖. 风荷载的几种模拟方法[J]. 工业建筑,2005, 35(5): 81-84.
LIU Xi-liang, ZHOU Ying. Numerical simulation methods of wind load [J]. Industrial Construction, 2005, 35(5): 81-84.
[17] DEODATIS G. Simulation of ergodic multivariate stochastic processes [J]. Journal of Engineering Mechanics, ASCE, 1996, 112(8): 778-787.
[18] CARASSALE L, SOLAR G. Monte Carlo simulation of wind velocity fields on complex structures [J]. Journal of Wind Engineering and Industrial Aerodynamics, 2006, 94(5): 323-339.
[19] SENTHOORAN S, DONG D L, PARAMESWARAN S. A computational model to calculate the flow-induced pressure fluctuations on buildings [J]. Journal of Wind Engineering and Industrial Areodynamics, 2004, 92(13): 1131-1145.
[20] SMIRNOV A, SHI S, CELIK I. Random flow generation technique for large eddy simulations and particle-dynamics modeling [J]. Journal of Fluids Engineering, 2001, 123(2): 359-371.
[21] 杨伦, 黄铭枫, 楼文娟, 等. 高层建筑三维瞬态风场的混合数值模拟[C]∥第十五届全国结构风工程学术会议暨第一届全国风工程研究生论坛论文集. 北京: 人民交通出版社, 2011: 545-548.
YANG Lun, HUANG Ming-feng, LOU Wen-juan, et al. Hybrid simulation of three dimensional fluctuating wind fields around tall buildings [C]∥15th National Conference on Structural Wind Engineering and Proceedings of the 1st National BBS Graduate Students in Wind Engineering. Beijing: People’s Traffic Press, 2011: 545-548.
[22] HOLMES J D, HANGAN H M. A forensic study of the Lubbock-Reese downdraft of 2002 [J]. Wind and Structures, 2008, 11(2): 137-152.

[1] 钱程, 沈国辉, 郭勇, 邢月龙. 节点半刚性对输电塔风致响应的影响[J]. 浙江大学学报(工学版), 2017, 51(6): 1082-1089.
[2] 楼文娟,罗罡,胡文侃. 输电线路等效静力风荷载与调整系数计算方法[J]. 浙江大学学报(工学版), 2016, 50(11): 2120-2127.
[3] 王磊, 梁枢果,王泽康,张正维. 超高层建筑横风向风振局部气动外形优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1239-1246.
[4] 沈国辉, 姚旦, 余世策, 楼文娟,邢月龙, 潘峰. 单山和双山风场特性的风洞试验[J]. 浙江大学学报(工学版), 2016, 50(5): 805-812.
[5] 梁笑天,袁行飞. 索支撑压杆屈曲性能分析[J]. 浙江大学学报(工学版), 2015, 49(3): 505-510.
[6] 肖南,杨逢春. 不同温度和位移边界下混凝土楼板配筋建议[J]. 浙江大学学报(工学版), 2014, 48(11): 1925-1932.
[7] 王磊,梁枢果,邹良浩,汤怀强,王述良.  超高层建筑涡振过程中体系振动频率[J]. 浙江大学学报(工学版), 2014, 48(5): 805-812.
[8] 赵阳,林寅,余世策. 大型低矮圆柱壳结构风荷载特性的风洞试验[J]. 浙江大学学报(工学版), 2014, 48(5): 820-826.
[9] 沈国辉, 项国通, 邢月龙, 郭勇, 孙炳楠, 楼文娟. 2种风场下格构式圆钢塔的天平测力试验研究[J]. J4, 2014, 48(4): 704-710.
[10] 沈国辉,陈震,邢月龙,郭勇,孙炳楠. 环形加劲板方向受压钢管节点的承载力[J]. J4, 2014, 48(1): 168-173.
[11] 李勰, 陈水福. 门式刚架轻钢结构抗风安全性分析[J]. J4, 2013, 47(12): 2141-2145.
[12] 沈国辉, 王宁博, 任涛, 施祖元, 楼文娟. 建筑结构风致响应的时频域计算方法比较[J]. J4, 2013, 47(9): 1573-1578.
[13] 杨伦,黄铭枫,楼文娟. 高层建筑周边三维瞬态风场的混合数值模拟[J]. J4, 2013, 47(5): 824-830.
[14] 卢旦,李承铭. 基于嵌入空间变形体法的流固耦合网格更新[J]. J4, 2013, 47(3): 508-514.
[15] 宁鹏飞,唐德高. 起爆位置偏差对结构内爆炸荷载的影响分析[J]. J4, 2012, 46(12): 2252-2258.