Please wait a minute...
浙江大学学报(工学版)  2021, Vol. 55 Issue (6): 1159-1167    DOI: 10.3785/j.issn.1008-973X.2021.06.017
电气工程     
电力电子装置强风散热模型简化方法及应用
林弘毅(),郭潇,伍梁,陈国柱*()
浙江大学 电气工程学院,浙江 杭州 310027
Simplification method and application of thermal model of forced air cooling system for power electronic device
Hong-yi LIN(),Xiao GUO,Liang WU,Guo-zhu CHEN*()
College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(1256 KB)   HTML
摘要:

为了提高热设计的设计效率,基于热传导、流体换热、流体力学理论,对典型强迫风冷散热系统进行精确建模,对精确模型进行简化方法的研究. 使用该简化热模型,可以对强迫风冷散热系统进行快速、准确的设计. 采用该简化热模型设计的380 V/50 kVar SiC-MOSFET静止无功补偿器(SVG)的工业化样机,散热器表面温升误差为4.1 ℃(满载条件),满足工程化设计的要求.

关键词: 散热器设计简化热模型强迫风冷静止无功补偿器(SVG)    
Abstract:

The accurate thermal model of the typical forced air cooling system was proposed based on the theory of heat conduction, fluid heat transfer and fluid mechanics in order to improve the design efficiency of thermal design. A simplified thermal model was proposed based on the accurate thermal model. The forced air cooling system can be quickly and accurately designed by the simplified thermal model. The simplified thermal model with the advantages of small calculation amount and high design efficiency was applied to the thermal design of 380 V/50 kVar SiC-MOSFET static var generator (SVG). The surface temperature rise error of the SVG heatsink designed by the simplified model was 4.1 ℃ (full load condition), which meeted the requirements of engineering design.

Key words: thermal design    simplified thermal model    forced air cooling    static var generator (SVG)
收稿日期: 2020-07-13 出版日期: 2021-07-30
CLC:  TM 762  
基金资助: 国家自然科学基金资助项目(51777186)
通讯作者: 陈国柱     E-mail: lhy2007.11@qq.com;gzchen@zju.edu.cn
作者简介: 林弘毅(1996—),男,硕士生,从事大功率电力电子装置及数字控制的研究. orcid.org/0000-0002-4710-4195. E-mail: lhy2007.11@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林弘毅
郭潇
伍梁
陈国柱

引用本文:

林弘毅,郭潇,伍梁,陈国柱. 电力电子装置强风散热模型简化方法及应用[J]. 浙江大学学报(工学版), 2021, 55(6): 1159-1167.

Hong-yi LIN,Xiao GUO,Liang WU,Guo-zhu CHEN. Simplification method and application of thermal model of forced air cooling system for power electronic device. Journal of ZheJiang University (Engineering Science), 2021, 55(6): 1159-1167.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2021.06.017        https://www.zjujournals.com/eng/CN/Y2021/V55/I6/1159

图 1  典型强迫风冷散热系统结构示意图及其Foster热阻网络
图 2  散热器热阻求解的过程
图 3  散热器风道单元热阻模型
图 4  散热器翅片长度c与热阻Rth,h-a的关系
图 5  散热器翅片间距系数si、长L与热阻Rth,h-a的关系
图 6  SVG系统的电路拓扑
符号 参数说明 参数值
Us 电网线电压 380 V
f0 电网频率 50 Hz
Vdc SVG直流侧电压 780 V
Sc SVG额定功率 50 kVar
Ixrms 每只MOSFET输出电流有效值 25 A
fsw 开关频率 50 kHz
Esw,const 开关损耗系数(tc=100 ℃) 17×10?6 J
Esw,k 开关损耗系数(tc=100 ℃) 140×10?6 J
Qrr 二极管反向充电电荷(tc=100 ℃) 230 nC
Ron 导通电阻(tc=100 ℃) 60 mΩ
表 1  SVG的主要电路参数
图 7  散热系统仿真温度场稳态分布图环境(ta = 25 ℃)
参数 仿真值 实验值
Q/W 768 787
Δtc/℃ 38.2 43.1
Δth/℃ 21.1 21.9
Rth,h-a/(K·W?1) 0.027 5 0.027 8
${\sigma _{{R_{{\rm{th}}}}}} $(精确热模型) 20.7% 19.4%
Δth,err/℃ 4.9 4.7
${\sigma _{{R_{{\rm{th}}}}}} $(简化热模型) 18.8% 17.2%
Δth,err/℃ 4.4 4.1
表 2  SVG满载时散热系统的仿真和实验结果
图 8  散热系统测试平台
图 9  SVG满载时,输出电流波形
1 LALOYA E, LUCÍA Ó, SARNAGO H, et al Heat management in power converters: from state of the art to future ultrahigh efficiency systems[J]. IEEE Transactions on Power Electronics, 2016, 31 (11): 7896- 7908
doi: 10.1109/TPEL.2015.2513433
2 盛况, 郭清, 张军明, 等 碳化硅电力电子器件在电力系统的应用展望[J]. 中国电机工程学报, 2012, 32 (30): 1- 7
SHENG Kuang, GUO Qing, ZHANG Jun-ming, et al Development and prospect of sic power devices in power grid[J]. Proceedings of the CSEE, 2012, 32 (30): 1- 7
3 张栋, 范涛, 温旭辉, 等 电动汽车用高功率密度碳化硅电机控制器研究[J]. 中国电机工程学报, 2019, 39 (19): 5624- 5634
ZHANG Dong, FAN Tao, WEN Xu-hui, et al Research on high power density sic motor drive controller[J]. Proceedings of the CSEE, 2019, 39 (19): 5624- 5634
4 胡建辉, 李锦庚, 邹继斌, 等 变频器中的IGBT模块损耗计算及散热系统设计[J]. 电工技术学报, 2009, 24 (3): 159- 163
HU Jian-hui, LI Jin-geng, ZOU Ji-bin, et al Losses calculation of igbt module and heat dissipation system design of inverters[J]. Transactions of China Electrotechnical Society, 2009, 24 (3): 159- 163
doi: 10.3321/j.issn:1000-6753.2009.03.027
5 丁杰, 张平 电机控制器用IGBT风冷散热器的热仿真与实验[J]. 电源学报, 2015, 13 (2): 38- 44
DING Jie, ZHANG Ping Thermal analysis and experimental of igbt air-cooled radiator for motor controller[J]. Journal of Power Supply, 2015, 13 (2): 38- 44
6 何文志, 丘东元, 肖文勋, 等 高频大功率开关电源结计[J]. 电工技术学报, 2013, 28 (2): 185- 191
HE Wen-zhi, QIU Dong-yuan, XIAO Wen-xun, et al Thermal design of high frequency high powerswitched-mode power supply[J]. Transactions of China Electrotechnical Society, 2013, 28 (2): 185- 191
doi: 10.3969/j.issn.1000-6753.2013.02.025
7 刘超, 贾晓宇, 胡长生, 等 电动汽车SiC MOSFET风冷逆变器的散热器设计[J]. 电源学报, 2018, 16 (3): 151- 157
LIU Chao, JIA Xiao-yu, HU Chang-sheng, et al Design of heat sink for electric vehicle SiC MOSFET air-cooled inverter[J]. Journal of Power Suply, 2018, 16 (3): 151- 157
8 DROFENIK U, STUPAR A, KOLAR J W Analysis of theoretical limits of forced-air cooling using advanced composite materials with high thermal conductivities[J]. IEEE Transactions on Components Packaging and Manufacturing Technology, 2011, 4 (11): 528- 535
9 GAMMETER C, KRISMER F, KOLAR J W Weight optimization of a cooling system composed of fan and extruded-fin heat sink[J]. IEEE Transactions on Industry Applications, 2015, 51 (a): 509- 520
10 杨俊, 查鲲鹏, 高冲, 等 直流换流阀晶闸管热阻抗端口特性分析与建模[J]. 中国电机工程学报, 2016, 36 (1): 196- 204
YANG Jun, ZHA Kun-peng, GAO Chong, et al Study on external characteristics and modelling for thermal impedance of thyrisor in HVDC converter valve[J]. Proceedings of the CSEE, 2016, 36 (1): 196- 204
11 MUZYCHKA Y S, YOVANOVICH M M Laminar forced convection heat transfer in the combined entry region of non-circular ducts[J]. Journal of Heat Transfer, 2004, 126 (1): 20- 24
12 MUZYCHKA Y S, YOVANOVICH M M Pressure drop in laminar developing flow in noncircular ducts: a scaling and modeling approach[J]. Journal of Fluids Engineering, 2009, 131 (11): 105- 111
13 尤尼斯·夏班尼. 传热学-电力电子器件热管理[M]. 北京: 机械工业出版社, 2013.
14 BAEHR H, STEPHAN K. Heat transfer [M]. Berlin: Springer, 1998.
15 ZWEBEN C. Advanced composites and other advanced materials for electronic packaging thermal management[C]// International Symposium on Advanced Packaging Materials: Processes, Properties and Interfaces. Braselton: IEEE, 2001: 360-365.
16 KOLAR J W, ZACH F C, CASANELLAS F Losses in PWM inverters using IGBTs[J]. IEE Proceedings, 1995, 142 (4): 285- 288
17 白保东, 陈德志, 王鑫博 逆变器IGBT损耗计算及冷却装置设计[J]. 电工技术学报, 2013, 28 (8): 97- 106
BAI Bao-dong, CHEN De-zhi, WANG Xin-bo Loss calculation of inverter IGBT and design of cooling device[J]. Transactions of China Electrotechnical Society, 2013, 28 (8): 97- 106
doi: 10.3969/j.issn.1000-6753.2013.08.014
[1] 王跃,周振邦,彭赟. 三电平双模块并联协同特定谐波消除脉宽调制[J]. 浙江大学学报(工学版), 2020, 54(7): 1425-1432.
[2] 谢鹏康, 陈恒林, 陈国柱. 并联磁阀三相六柱式磁阀式可控电抗器磁损特性[J]. 浙江大学学报(工学版), 2015, 49(12): 2418-2424.
[3] 陈晓, 陈恒林, 陈国柱. 基于耦合电感的三相四线制并联有源电力滤波器[J]. 浙江大学学报(工学版), 2015, 49(8): 1529-1536.
[4] 杨昆, 王跃, 陈国柱. 基于误差调节的DSTATCOM重复控制策略[J]. 浙江大学学报(工学版), 2015, 49(6): 1087-1092.
[5] 王志恒,杨庆华,胡新华,阮健. 颤振激励下金属冷挤压成形降载特性[J]. 浙江大学学报(工学版), 2014, 48(11): 1983-1993.
[6] 王跃,杨昆,杨华,陈国柱. 通用SPWM发生器的实现及脉冲竞争消除新方法[J]. 浙江大学学报(工学版), 2014, 48(11): 2087-2093.
[7] 王跃,杨昆,杨华,陈国柱. 通用SPWM发生器的实现及脉冲竞争消除新方法[J]. 浙江大学学报(工学版), 2014, 48(6): 2-.
[8] 王志恒,杨庆华,胡新华,阮健. 颤振激励下金属冷挤压成形降载特性[J]. 浙江大学学报(工学版), 2014, 48(6): 3-.
[9] 钟晓剑, 冯霞,徐群伟,陈国柱. 基于ABC坐标系的三相四线并联型APF控制策略[J]. 浙江大学学报(工学版), 2014, 48(5): 889-895.
[10] 王跃, 杨昆, 钟晓剑, 陈国柱. 基于多同步旋转变换的并联型APF补偿策略[J]. J4, 2013, 47(4): 705-710.
[11] 杨昆, 陈磊, 陈国柱. 单相SVG高性能补偿电流控制技术[J]. 浙江大学学报(工学版), 2013, 47(2): 339-344.