Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (9): 1849-1857    DOI: 10.3785/j.issn.1008-973X.2020.09.022
地球科学     
韵律沙坝触发的裂流动态性研究
张尧1(),刘强1,刘旭楠1,许国栋1,洪晓2,周水华2,刘维杰3,*(),赵西增3
1. 自然资源部海洋减灾中心,北京 100000
2. 南海预报中心,广东 广州 510000
3. 浙江大学 海洋学院,浙江 舟山 316000
Variability of rip currents induced by rhythmic sandbars
Yao ZHANG1(),Qiang LIU1,Xu-nan LIU1,Guodong XU1,Xiao HONG2,Shui-hua ZHOU2,Wei-jie LIU3,*(),Xi-zeng ZHAO3
1. National Marine Hazard Mitigation Service, Ministry of Natural Resources, Beijing 100000, China
2. South China Sea Prediction Center, Guangzhou 510000, China
3. College of Ocean, Zhejiang University, Zhoushan 316000, China
 全文: PDF(1268 KB)   HTML
摘要:

基于3个华南海滩案例分析结果,采用Boussinesq相位解析水动力数值模型,模拟裂流环流,检验裂流对多沟槽浅滩沙坝和不同浪高、浪向的敏感性,计算、分析时均流速、涡量和水位的空间分布. 结果表明,裂流强度与入射波高、裂流槽宽度成正比. 在多沟槽裂流系统中,当大部分水流集中从邻近的较宽通道流出时,较窄的沟槽可能不产生裂流. 模拟结果表明:当入射角达到11° 时,沿岸流会逐渐取代离岸流而占主导地位,不利于沟槽沙坝的持续存在. 由于突变地形导致的波浪不均匀破碎,沙坝边缘附近有强涡旋现象,水流旋度随着波向偏转而明显增强,并且沿沙坝阵列拉伸. 沙坝促进了岸边的波浪增水,且堆积水量随着波角的变大而增加. 随着入射波波向的偏转,裂流槽内没有出现水面凹陷,这从机理上解释了当入射波角略微倾斜时裂流现象不能持续的原因.

关键词: 裂流韵律沙坝波向数值模拟海洋灾害    
Abstract:

Base on the case study of three coastal beaches in south China, the sensitivity of multi-channel rip currents to the bathymetry and the wave conditions was checked by groups of numerical simulations using the Boussinesq phase-resolving model. The time-averaged velocity, vorticity, and surface elevation were computed and analyzed. Results indicate that the rip strength was in direct proportion to the incident wave height and the channel width. The rip current might be totally absent in small channels when the majority of water flows out through neighboring broader pathways. Alongshore currents prevailed over the rip current when the incident wave angle reached 11 degrees, which was not favorable to the existence of channeled sandbars. Vortices appeared around the edge of the bar crest due to nonuniform wave breaking over the rapid-varying bathymetry. The strong spin of the flow was significantly intensified and stretched along the sandbar array as the wave direction deflected. The setup water was held landward largely by the sandbar and substantially increased with the wave angle. There was no water surface depression in the rip channel as the angle increased, which fundamentally explained why the rip current could not persist when the incident wave became slightly oblique.

Key words: rip current    rhythmic sandbar    wave direction    numerical modelling    marine hazard
收稿日期: 2019-08-30 出版日期: 2020-09-22
CLC:  P 73  
基金资助: 国家自然科学基金资助项目(51609043);自然资源部海洋减灾中心业务资助项目(2018AB005)
通讯作者: 刘维杰     E-mail: yzhang@nmhms.org.cn;weijieliu@zju.edu.cn
作者简介: 张尧(1988—),男,副研究员,博士,从事计算水动力及海洋灾害研究. orcid.org/0000-0001-8105-4091. E-mail: yzhang@nmhms.org.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张尧
刘强
刘旭楠
许国栋
洪晓
周水华
刘维杰
赵西增

引用本文:

张尧,刘强,刘旭楠,许国栋,洪晓,周水华,刘维杰,赵西增. 韵律沙坝触发的裂流动态性研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1849-1857.

Yao ZHANG,Qiang LIU,Xu-nan LIU,Guodong XU,Xiao HONG,Shui-hua ZHOU,Wei-jie LIU,Xi-zeng ZHAO. Variability of rip currents induced by rhythmic sandbars. Journal of ZheJiang University (Engineering Science), 2020, 54(9): 1849-1857.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.09.022        http://www.zjujournals.com/eng/CN/Y2020/V54/I9/1849

图 1  海滩裂流风险遥感影像分析
图 2  研究区域海浪观测数据统计
图 3  十里银滩航拍图
图 4  2018年7月12日海陵岛十里银滩裂流彩染示踪试验视频截图(数模案例的通道2)
模拟工况 Hs/m 波向 T/s θ/(°)
1 2.0 SE-SSE 4.9 0
2 1.4 SE-SSE 4.9 0
3 1.2 SE-SSE 4.9 0
4 0.7 SE-SSE 4.9 0
5 1.4 SSE 4.9 11.25
6 1.4 S 4.9 33.75
表 1  不同模拟工况的入射波浪条件
图 5  数值模拟区域的水深地形及沙坝裂流通道分布
图 6  不同入射波高下平均流速空间分布的计算结果(入射角为0°)
图 7  不同入射波角下平均流速空间分布的计算结果(Hs = 1.4 m)
图 8  不同入射波角下旋度(涡量)空间分布的计算结果(Hs = 1.4 m)
图 9  不同入射波角下平均水位空间分布的计算结果(Hs = 1.4 m)
1 DALRYMPLE R A, MACMAHAN J H, RENIERS A J H M, et al Rip Currents[J]. Annual Review of Fluid Mechanics, 2011, 43 (43): 551- 581
2 王彦, 邹志利 海岸裂流的研究进展及其展望[J]. 海洋学报, 2014, 36 (5): 170- 176
3 DROZDZEWSKI D, SHAW W, DOMINEY-HOWES D, et al Surveying rip current survivors: preliminary insights into the experiences of being caught in rip currents[J]. Natural Hazards and Earth System Sciences, 2012, 12 (4): 1201- 1211
doi: 10.5194/nhess-12-1201-2012
4 United States Lifesaving Association. National lifesaving statistics (2013—2017) [J/OL]. [2019-08-30]. http://arc.usla.org/Statistics/public.asp.
5 GENSINI V A, ASHLEY W S An examination of rip current fatalities in the United States[J]. Natural Hazards, 2010, 54 (1): 159- 175
doi: 10.1007/s11069-009-9458-0
6 BRIGHTON B, SHERKER S, BRANDER R, et al Rip current related drowning deaths and rescues in Australia 2004-2011[J]. Natural Hazards and Earth System Sciences, 2013, 13 (4): 1069- 1075
doi: 10.5194/nhess-13-1069-2013
7 SHRODER J F, ELLIS J T, SHERMAN D J. Coastal and marine hazards, risks, and disasters [M]. Waltham: Elsevier, 2015: 335-380.
8 LINARES á, WU C H, BECHLE A J, et al Unexpected rip currents induced by a meteotsunami[J]. Scientific Reports, 2019, 9 (1): 2105
doi: 10.1038/s41598-019-38716-2
9 MACMAHAN J H, THORNTON E B, RENIERS A J H M Rip current review[J]. Coastal Engineering, 2006, 53 (2/3): 191- 208
10 BENASSAI G, AUCELLI P, BUDILLON G, et al Rip current evidence by hydrodynamic simulations, bathymetric surveys and UAV observation[J]. Natural Hazards and Earth System Sciences Discussions, 2017, 17 (9): 1493- 1503
doi: 10.5194/nhess-17-1493-2017
11 CASTELLE B, SCOTT T, BRANDER R W, et al Rip current types, circulation and hazard[J]. Earth-Science Reviews, 2016, 163: 1- 21
doi: 10.1016/j.earscirev.2016.09.008
12 王彦, 邹志利 平直沙坝海岸叠加波浪的裂流试验[J]. 水科学进展, 2015, 26 (1): 123- 129
WANG Yan, ZOU Zhi-li Experimental sudy of rip currents by intersecting wave on barred beach[J]. Advances in Water Science, 2015, 26 (1): 123- 129
13 CASTELLE B, MICHALLET H, MARIEU V, et al Laboratory experiment on rip current circulations over a moveable bed: drifter measurements[J]. Journal of Geophysical Research Oceans, 2010, 115 (C12):
14 彭石, 邹志利 海岸裂流的浮子示踪法实验测量[J]. 水动力学研究与进展: A辑, 2012, 26 (6): 645- 651
PENG Shi, ZOU Zhi-li Experimental measurement of rip currents with video-tracked drifters[J]. Chinese Journal of Hydrodynamics: A, 2012, 26 (6): 645- 651
15 HALLER M C, DALRYMPLE R A, SVENDSEN I A Experimental study of nearshore dynamics on a barred beach with rip channels[J]. Journal of Geophysical Research Oceans, 2002, 107 (C6): 912
16 KENNEDY A., THOMAS D Drifter measurements in a laboratory rip current[J]. Journal of Geophysical Research, 2004, 109 (C8): C08005
17 KENNEDY A B, ZHANG Y The stability of wave-driven rip current circulation[J]. Journal of Geophysical Research, 2008, 113 (C3): 682- 695
18 SUANDA S H, FEDDERSEN F A self-similar scaling for cross-shelf exchange driven by transient rip currents[J]. Geophysical Research Letters, 2015, 42 (13): 5427- 5434
doi: 10.1002/2015GL063944
19 MARCHESIELLO P, BENSHILA R, ALMAR R, et al On tridimensional rip current modeling[J]. Ocean Modelling, 2015, 96: 36- 48
doi: 10.1016/j.ocemod.2015.07.003
20 唐燕玲, 徐卢笛, 贺治国, 等 洋山海域三维潮流和余流特征的数值模拟[J]. 浙江大学学报: 工学版, 2019, 53 (2): 114- 123
TANG Lin-yan, XU Lu-di, HE Zhi-guo, et al Numerical simulation of three-dimensional characteristics of tidal current and residual current in Yangshan Harbor[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (2): 114- 123
21 WEIR B, UCHIYAMA Y, LANE E M, et al A vortex force analysis of the interaction of rip currents and surface gravity waves[J]. Journal of Geophysical Research Oceans, 2011, 116: C05001
22 ZHANG Y, KENNEDY A B, PANDA N, et al Generating-absorbing sponge layers for phase-resolving wave models[J]. Coastal Engineering, 2014, 84: 1- 9
doi: 10.1016/j.coastaleng.2013.10.019
23 ZHANG Y, KENNEDY A B, PANDA N, et al Boussinesq-Green-Naghdi rotational water wave theory[J]. Coastal Engineering, 2013, 73: 13- 27
doi: 10.1016/j.coastaleng.2012.09.005
24 LIU W, NING Y, ZHANG Y, et al Shock-capturing Boussinesq modelling of broken wave characteristics near a vertical seawall[J]. Water, 2018, 10 (12): 1876
doi: 10.3390/w10121876
25 CHEN Q, DALRYMPLE R A, KIRBY J T, et al Boussinesq modeling of a rip current system[J]. Journal of Geophysical Research, 1999, 20617- 20637
26 HAAS K A, SVENDSEN I A, HALLER M C, et al Quasi-three-dimensional modeling of rip current systems[J]. Journal of Geophysical Research, 2003, 108 (C7): 331- 351
27 JOHNSON D, PATTIARATCHI C Boussinesq modelling of transient rip currents[J]. Coastal Engineering, 2006, 53 (5/6): 419- 439
28 ZHANG Y, KENNEDY A B, TOMICZEK T, et al Validation of Boussinesq-Green-Naghdi modeling for surf zone hydrodynamics[J]. Ocean Engineering, 2016, 111: 299- 309
doi: 10.1016/j.oceaneng.2015.11.004
29 AUSTIN M, SCOTT T, BROWN J, et al Temporal observations of rip current circulation on a macro-tidal beach[J]. Continental Shelf Research, 2010, 30 (9): 1149- 1165
doi: 10.1016/j.csr.2010.03.005
30 ATHANASIOU P, DE BOER W, YOO J, et al Analysing decadal-scale crescentic bar dynamics using satellite imagery: a case study at Anmok beach, South Korea[J]. Marine Geology, 2018, 405: 1- 11
doi: 10.1016/j.margeo.2018.07.013
31 DOMINEYHOWES D, BRANDER R W, DROZDZEWSKI D "Dye in the water": a visual approach to communicating the rip current hazard[J]. Science Communication Linking Theory and Practice, 2014, 36 (6): 802- 810
32 SCHMIDT W E, WOODWARD B T, MILLIKAN K S, et al A GPS-tracked surf zone drifter[J]. Journal of Atmospheric and Oceanic Technology, 2003, 20 (7): 1069- 1075
doi: 10.1175/1460.1
33 MACMAHAN J H, THORNTON E B, STANTON T P, et al RIPEX: observations of a rip current system[J]. Marine Geology, 2005, 218 (1-4): 113- 134
doi: 10.1016/j.margeo.2005.03.019
34 MACMAHAN J, THORNTON B E Low-cost handheld global positioning system for measuring surf-zone currents[J]. Journal of Coastal Research, 2009, 25 (3): 744- 754
35 MCCARROLL R J, BRANDER R W, TURNER I L, et al Lagrangian observations of circulation on an embayed beach with headland rip currents[J]. Marine Geology, 2014, 355: 173- 188
doi: 10.1016/j.margeo.2014.05.020
36 SCOTT T, AUSTIN M, MASSELINK G, et al Dynamics of rip currents associated with groynes-field measurements, modelling and implications for beach safety[J]. Coastal Engineering, 2016, 107: 53- 69
doi: 10.1016/j.coastaleng.2015.09.013
37 RADERMACHER M, DE SCHIPPER M A, RENIERS A J H M Sensitivity of rip current forecasts to errors in remotely-sensed bathymetry[J]. Coastal Engineering, 2018, 135: 66- 76
doi: 10.1016/j.coastaleng.2018.01.007
38 HOLMAN R, HALLER M C Remote sensing of the nearshore[J]. Annual Review of Marine Science, 2013, 5 (1): 95- 113
doi: 10.1146/annurev-marine-121211-172408
39 YOON S B, PARK W K, CHOI J Observation of rip current velocity at an accidental event by using video image analysis[J]. Journal of Coastal Research, 2014, 72: 16- 21
doi: 10.2112/SI72-004.1
40 HALLER M C, HONEGGER D, PATRICIO ANDRES CATALáN Rip current observations via marine radar[J]. Journal of Waterway Port Coastal and Ocean Engineering, 2014, 140 (2): 115- 124
doi: 10.1061/(ASCE)WW.1943-5460.0000229
41 HALLER M C, DALRYMPLE R A Rip current instabilities[J]. Journal of Fluid Mechanics, 2001, 433 (433): 161- 192
42 YU J, CHEN S Hydrodynamic instability mechanism for rip currents[J]. Studies in Applied Mathematics, 2015, 135 (2): 196- 223
doi: 10.1111/sapm.12074
43 WRIGHT L D, SHORT A D, GREEN M O Short-term changes in the morphodynamic states of beaches and surf zones: An empirical predictive model[J]. Marine Geology, 1985, 62 (3): 339- 364
44 MASSELINK G, SHORT A D The effect of tide range on beach morphodynamics and morphology: a conceptual beach model[J]. Journal of Coastal Research, 1993, 9 (3): 785- 800
45 SCOTT T, MASSELINK G, RUSSELL P Morphodynamic characteristics and classification of beaches in England and Wales[J]. Marine Geology, 2011, 286 (1–4): 1- 20
46 LI Z Rip current hazards in South China headland beaches[J]. Ocean and Coastal Management, 2016, 121: 23- 32
doi: 10.1016/j.ocecoaman.2015.12.005
47 ALVAREZELLACURIA A, ORFILA A, OLABARRIETA M, et al A nearshore wave and current operational forecasting system[J]. Journal of Coastal Research, 2010, 26 (3): 503- 509
48 MOULTON M, DUSEK G, ELGAR S, et al Comparison of rip current hazard likelihood forecasts with observed rip current speeds[J]. Weather and Forecasting, 2017, 32 (4): 1659- 1666
doi: 10.1175/WAF-D-17-0076.1
49 DUSEK G, SEIM H A probabilistic rip current forecast model[J]. Journal of Coastal Research, 2013, 289 (4): 909- 925
50 自然资源部. 2018 年中国海洋经济统计公报[EB/OL]. [2019 -04 -11]. http://gi.mnr.gov.cn/201904/t20190411_2404774.html
51 解鸣晓, 张玮 近岸波生流运动三维数值模拟及验证[J]. 水科学进展, 2011, 22 (3): 391- 399
XIE Ming-xiao, ZHANG Wei 3D numerical modeling of nearshore wave-induced currents[J]. Advances in Water Science, 2011, 22 (3): 391- 399
52 胡日军, 吴建政, DONG P, 等 海岸沙坝横向迁移研究综述[J]. 水科学进展, 2016, 27 (5): 784- 791
HU Ri-jun, WU Jian-zheng, PING Dong, et al A review of cross-shore migration of nearshore sandbar[J]. Advances in Water Science, 2016, 27 (5): 784- 791
53 房克照, 尹继伟, 邹志利 单沟槽沙坝海岸的裂流实验研究[J]. 水动力学研究与进展A辑, 2013, 28 (3): 127- 133
FANG Ke-zhao, YIN Ji-wei, ZOU Zhi-li Experiment study on rip current or barred beach with a single channel[J]. Chinese Journal of Hydrodynamics A, 2013, 28 (3): 127- 133
54 房克照, 邹志利, 刘忠波 沙坝海岸上裂流的数值模拟[J]. 水动力学研究与进展, 2011, 26 (4): 479- 486
FANG Ke-zhao, ZOU Zhil-li, LIU Zhong-bo Numerical simulation of rip current generated on a barred beach[J]. Chinese Journal of Hydrodynamics, 2011, 26 (4): 479- 486
55 孟凡昌, 李本霞 裂流的研究综述[J]. 海洋预报, 2017, 34 (1): 82- 89
MENG Fan-chang, LI Ben-xia Review on the study of the rip current[J]. Marine Forecasts, 2017, 34 (1): 82- 89
doi: 10.11737/j.issn.1003-0239.2017.01.011
56 刘洁, 白玉川, 徐海珏 幂律流底泥的质量输移和流场[J]. 浙江大学学报: 工学版, 2016, 50 (9): 1798- 1805
LIU Jie, BAI Yu-chuan, XU Hai-jue Mass transport and flow field of power law muddy bed under surface waves[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (9): 1798- 1805
57 ZHENG J, ZHANG C, DEMIRBILEK Z, et al Numerical study of sandbar migration under wave-undertow interaction[J]. Journal of Waterway, Port, Coastal, and Ocean Engineering, 2014, 140 (2): 146- 159
doi: 10.1061/(ASCE)WW.1943-5460.0000231
58 SHI F, KIRBY J T, HARRIS J C, et al A high-order adaptive time-stepping TVD solver for Boussinesq modeling of breaking waves and coastal inundation[J]. Ocean Modelling, 2012, 43-44 (2): 36- 51
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 曾超峰,王硕,袁志成,薛秀丽. 考虑邻近结构阻隔影响的基坑开挖前降水引发地层变形的特性[J]. 浙江大学学报(工学版), 2021, 55(2): 338-347.
[3] 赵伟国,路佳佳,赵富荣. 基于缝隙射流原理的离心泵空化控制研究[J]. 浙江大学学报(工学版), 2020, 54(9): 1785-1794.
[4] 杨松松,王梅,杜建安,郭勇,耿炎. 管幕预筑法顶管施工顺序对地表沉降的影响[J]. 浙江大学学报(工学版), 2020, 54(9): 1706-1714.
[5] 余亚波,邓亚东. 燃料电池客车高压舱氢气泄漏扩散[J]. 浙江大学学报(工学版), 2020, 54(2): 381-388.
[6] 张玉琦,蒋楠,贾永胜,周传波,罗学东,吴廷尧. 运营充水状态高密度聚乙烯管的爆破振动响应特性[J]. 浙江大学学报(工学版), 2020, 54(11): 2120-2127.
[7] 刘昊苏,雷俊卿. 大跨度双层桁架主梁三分力系数识别[J]. 浙江大学学报(工学版), 2019, 53(6): 1092-1100.
[8] 邱文亮,胡哈斯,田甜,张哲. 影响钢管混凝土组合桥墩抗震性能的结构参数[J]. 浙江大学学报(工学版), 2019, 53(5): 889-898.
[9] 夏晋,金世杰,何晓宇,徐小梅,金伟良. 电势条件对混凝土结构电化学修复数值模拟的影响[J]. 浙江大学学报(工学版), 2019, 53(12): 2298-2308.
[10] 向羽,张树哲,李俊峰,魏正英,杨理想,姜立昊. Ti6Al4V的激光选区熔化单道成形数值模拟与实验验证[J]. 浙江大学学报(工学版), 2019, 53(11): 2102-2109.
[11] 陈文卓, 陈雁, 张伟明, 何少炜, 黎波, 姜俊泽. 圆弧面动态空气喷涂数值模拟[J]. 浙江大学学报(工学版), 2018, 52(12): 2406-2413.
[12] 刘瑞媚, 刘玉坤, 王智化, 刘颖祖, 胡利华,邵哲如, 岑可法. 垃圾焚烧炉排炉二次风配风的CFD优化模拟[J]. 浙江大学学报(工学版), 2017, 51(3): 500-507.
[13] 韩运动, 姚松. 高速列车气动性能的尺度效应分析[J]. 浙江大学学报(工学版), 2017, 51(12): 2383-2391.
[14] 张晓涛,谭翀,陆愈实. 传统控烟设施对空气幕阻烟性能的影响[J]. 浙江大学学报(工学版), 2016, 50(9): 1738-1745.
[15] 李正昊,楼文娟,章李刚,卞荣,段志勇. 地貌因素对垭口内风速影响的数值模拟[J]. 浙江大学学报(工学版), 2016, 50(5): 848-855.