浙江大学学报(工学版)  2019, Vol. 53 Issue (5): 988-996    DOI: 10.3785/j.issn.1008-973X.2019.05.021
 机械工程、化学工程

1. 浙江大学 机械工程学院，浙江 杭州 310027
2. 杭州碱泵有限公司，浙江 杭州 310030
3. 杭州力源发电设备有限公司，浙江杭州 311202
4. 杭州杭发发电设备有限公司，浙江 杭州 311215
5. 沈阳透平机械股份有限公司，辽宁 沈阳 110869
Optimization calculation method for efficiency of multistage split case centrifugal pump
Shui-guang TONG1(),Hang ZHAO1,Hui-qin LIU1,Zhe-ming TONG1,Yue YU1,Ning TANG1,Wei-jie WU1,Jin-fu LI2,Fei-yun CONG1,*(),Hao ZHANG3,Yin-hua WANG4,Guo-shuai HAO5
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Alkali Pump Co. Ltd, Hangzhou 310030, China
3. Hangzhou Resource Power Equipment Co. Ltd, Hangzhou 311202, China
4. Hangzhou Hangfa Electrical Equipment Co. Ltd, Hangzhou 311215, China
5. Shenyang Turbine Machinery Co. Ltd, Shenyang 110869, China
 全文: PDF(1471 KB)   HTML

Abstract:

The optimization calculation method of the hydraulic efficiency and the relative width of high efficient area for centrifugal pumps was researched. The multi-objective optimization calculation method of the approximate models was proposed based on the hydraulic loss model. Optimization design of multi-stage dual split centrifugal pump was conducted as an example. The key design variables were selected out through sensitivity analysis based on the hydraulic loss model. The hydraulic loss model, the complete quadratic response surface function (RSF) model, the radial basis Gaussian response surface function (RBF) model and the Kriging response surface function (KRG) model were used respectively to optimize the key design variables of centrifugal pumps. The accuracy and efficiency of the four methods were analyzed as well. Results showed that the calculation time of the first optimization method based on the theoretical formula was the shortest, but the error was big. The latter three optimization methods were based on the computational fluid dynamics (CFD) numerical simulation analysis and the results were accurate. The results of RSF model were the most accurate and the calculation time was short. The calculation results of RSF was the most accurate, followed by that of RBF, and the worst was that of KRG by the comparison of the calculation accuracies of the three approximate models. The Pareto optimal solution based on RSF had the head of 83.77 m and the efficiency of 77.26% with the design flow. The Pareto optimal solution based on RBF had the head of 83.09 m and the efficiency of 76.63% with the design flow.

Key words: multistage centrifugal pump    hydraulic loss model    key design variables    approximate model    muti-objective optimization

 CLC: TH 311

 服务 把本文推荐给朋友 加入引用管理器 E-mail Alert 作者相关文章 童水光 赵航 刘会琴 童哲铭 余跃 唐宁 吴伟杰 李进富 从飞云 张昊 王寅华 郝国帅

#### 引用本文:

Shui-guang TONG,Hang ZHAO,Hui-qin LIU,Zhe-ming TONG,Yue YU,Ning TANG,Wei-jie WU,Jin-fu LI,Fei-yun CONG,Hao ZHANG,Yin-hua WANG,Guo-shuai HAO. Optimization calculation method for efficiency of multistage split case centrifugal pump. Journal of ZheJiang University (Engineering Science), 2019, 53(5): 988-996.

#### 链接本文:

 图 1  单级离心泵效率优化设计方案 表 1  多级泵设计变量取值范围 图 2  单变量对单级离心泵外特性值的影响曲线 图 3  离心泵设计变量灵敏度分析 图 4  单级离心泵计算网格模型 表 2  响应面模型有效性检验 图 6  近似模型水力功率预测值与CFD数值计算结果对比 图 7  近似模型效率预测值与CFD数值计算结果对比 表 3  4种计算模型Pareto最优解及CFD数值模拟分析 图 5  近似模型扬程预测值与CFD数值计算结果对比 图 8  叶轮1、2的单级离心泵全流量性能预测
 1 杨军虎, 边中, 钟春林, 等 基于水力损失计算的离心泵叶轮叶片出口安放角选择方法[J]. 西华大学学报: 自然科学版, 2016, (3): 89- 92YANG Jun-hu, BIAN Zhong, ZHONG Chun-lin, et al Method for selecting centrifugal pump impeller outlet angle based on calculation of centrifugal pump impeller's hydraulic loss[J]. Journal of Xihua University: Natural Science, 2016, (3): 89- 92 2 高江永. 离心泵叶轮与蜗壳参数优化设计的研究[D].邯郸: 河北工程大学, 2008.GAO Jiang-yong. Study on optimization of centrifugal pump impeller's and volute's parameters [D]. Handan: Hebei University of Engineering, 2008. 3 聂松辉, 朱柏林, 廖述涛, 等 基于遗传算法的离心泵优化设计[J]. 机械设计, 2013, (12): 19- 22NIE Song-hui, ZHU Bai-lin, LIAO Shu-tao, et al Optimization design of centrifugal pump based on genetic algorithm[J]. Journal of Machine Design, 2013, (12): 19- 22 4 王春林, 彭海菠, 丁剑, 等 基于响应面法的旋流泵优化设计[J]. 农业机械学报, 2013, 44 (5): 59- 65WANG Chun-lin, PENG Hai-bo, DING Jian, et al Optimization for vortex pump based on response surface method[J]. Transactions of the Chinese Society for Agricultural Machinery, 2013, 44 (5): 59- 65 5 王文杰, 袁寿其, 裴吉, 等 基于Kriging模型和遗传算法的泵叶轮两工况水力优化设计[J]. 机械工程学报, 2015, (15): 33- 38WANG Wen-jie, YUAN Shou-qi, PEI Ji, et al Two-point hydraulic optimization of pump impeller based on kriging model and neighborhood cultivation genetic algorithm[J]. Journal of Mechanical Engineering, 2015, (15): 33- 38 6 BELLARY S A I, HUSAIN A, SAMAD A Effectiveness of meta-models for multi-objective optimization of centrifugal impeller[J]. Journal of Mechanical Science and Technology, 2014, 28 (12): 4947- 4957 7 BELLARY S A I, ADHAV R, SIDDIQUE M H, et al Application of computational fluid dynamics and surrogate-coupled evolutionary computing to enhance centrifugal-pump performance[J]. Engineering Applications of Computational Fluid Mechanics, 2016, 10 (1): 171- 181 8 HEO M, MA S, SHIM H, et al High-efficiency design optimization of a centrifugal pump[J]. Journal of Mechanical Science and Technology, 2016, 30 (9): 3917- 3927 9 谈明高, 刘厚林, 袁寿其 离心泵水力损失的计算[J]. 江苏大学学报: 自然科学版, 2007, 28 (5): 405- 408TAN Ming-gao, LIU Hou-lin, YUAN Shou-qi Calculation of hydraulic loss in centrifugal pumps[J]. Journal of Jiangsu University: Natural Science Edtion, 2007, 28 (5): 405- 408 10 王丹. 基于遗传算法的中低比转速离心泵优化设计[D]. 兰州: 兰州理工大学, 2016.WANG Dan. Optimization design of low specific-speed centrifugal pump based on genetic algorithm [D]. Lanzhou: Lanzhou University of Technology, 2016. 11 马艺, 马中强, 张生昌, 等 中比转速无过载多级离心泵的叶轮设计方法[J]. 上海交通大学学报, 2015, 49 (5): 695- 701MA Yi, MA Zhong-qiang, ZHANG Sheng-chang, et al A novel design method for impeller of medium specific speed non-overload multistage centrifugal pump[J]. Journal of Shanghai Jiaotong University, 2015, 49 (5): 695- 701 12 张宇, 覃刚, 张云清, 等 基于克里金响应面元模型的离心泵水力性能多目标优化[J]. 华中科技大学学报: 自然科学版, 2015, 43 (4): 54- 57ZHANG Yu, QIN Gang, ZHANG Yun-qing, et al Kriging based muti-objective optimization for hydraulic performance of centrifugal pump[J]. Journal of Huazhong University of Science and Technology: Natural Science Edition, 2015, 43 (4): 54- 57 13 高江永. 离心泵叶轮与蜗壳参数优化设计的研究[D]. 邯郸: 河北工程大学, 2008.GAO Jiang-yong. Study on optimization of centrifugal pump impeller's and volute's parameters [D]. Handan: Hebei University of Engineering, 2008. 14 BABAYIGIT O, KOCAASLAN O, AKSOY M H, et al. Numerical identification of blade exit angle effect on the performance for a multistage centrifugal pump impeller [J]. EPJ Web of Conferences, 2015, 92: 2003. 15 MOHAMMADI N, FAKHARZADEH M Analysis of effect of impeller geometry including blade outlet angle on the performance of multi-pressure pumps: Simulation and experiment[J]. Mechanika, 2017, 23 (1): 107- 119 16 KOCAASLAN O, OZGOREN M, BABAYIGITO, et al Numerical investigation of the effect of number of blades on centrifugal pump performance[J]. AIP Conference Proceedings, 2017, 1863 (1): 030028
 [1] 李笑竹,王维庆. 区域综合能源系统两阶段鲁棒博弈优化调度[J]. 浙江大学学报(工学版), 2021, 55(1): 177-188. [2] 楼恺俊,俞峰,夏唐代,马健. 黏土中地下连续墙支护结构的稳定性分析[J]. 浙江大学学报(工学版), 2020, 54(9): 1697-1705. [3] 黄华,邓文强,李源,郭润兰. 基于空间动力学优化的机床结构件质量匹配设计[J]. 浙江大学学报(工学版), 2020, 54(10): 2009-2017. [4] 毕晓君, 王朝. 基于超平面投影的高维多目标进化算法[J]. 浙江大学学报(工学版), 2018, 52(7): 1284-1293. [5] 张德胜, 刘安, 陈健, 赵睿杰, 施卫东. 采用粒子群算法的水平轴潮流能水轮机翼型多目标优化[J]. 浙江大学学报(工学版), 2018, 52(12): 2349-2355. [6] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759. [7] 张俊红, 张玉声, 王健, 徐喆轩, 胡欢, 赵永欢. 考虑热机耦合的排气歧管多目标优化设计[J]. 浙江大学学报(工学版), 2017, 51(6): 1153-1162. [8] 李建丽, 丁丁, 李涛. 基于二次聚类的多目标混合云任务调度算法[J]. 浙江大学学报(工学版), 2017, 51(6): 1233-1241. [9] 夏玉峰, 任莉, 叶彩红, 王力. 基于RSM的立柱加强板定位布局多目标优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1600-1607. [10] 杨姝, 刘国平, 亓昌, 王大志. 金属空心球梯度泡沫结构抗冲击特性仿真与优化[J]. 浙江大学学报(工学版), 2016, 50(8): 1593-1599. [11] 过晓芳,王宇平,代才. 新的混合分解高维多目标进化算法[J]. 浙江大学学报(工学版), 2016, 50(7): 1313-1321. [12] 张俊红,郭迁,王健,徐喆轩,陈孔武. 塑料机油冷却器盖加强筋参数的多目标优化[J]. 浙江大学学报(工学版), 2016, 50(7): 1360-1366. [13] 杨辉华, 谢谱模, 张晓凤, 马巍, 刘振丙. 求解多目标优化问题的改进布谷鸟搜索算法[J]. 浙江大学学报(工学版), 2015, 49(8): 1600-1608. [14] 过海,倪益华,王进,陆国栋. 车用空调冷凝器性能多目标优化方法[J]. 浙江大学学报(工学版), 2015, 49(1): 142-159. [15] 何忠华,袁一星. 基于剩余能量熵的供水管网可靠性优化设计[J]. 浙江大学学报(工学版), 2014, 48(7): 1188-1194.