Please wait a minute...
浙江大学学报(工学版)
机械工程     
挖掘机动臂势能回收系统的压力滑模控制
王飞1,2, 管成1, 肖扬1, 李威1
1. 浙江大学 机械设计研究所, 浙江 杭州 310027; 2.宁波大红鹰学院 机械与电气工程学院,浙江 宁波 315175
Pressure sliding mode control of hydraulic excavator boom potential energy recovery
WANG Fei1,2, GUAN Cheng1, XIAO Yang1, LI Wei1
1. Mechanical Design Institute, Zhejiang University, Hangzhou 310027, China; 2. School of Mechanical and Electrical Engineering, Ningbo Dahongying University, Ningbo 315175, China
 全文: PDF(2201 KB)   HTML
摘要:

为了实现混合动力液压挖掘机动臂势能回收,保证动臂下降过程的平稳性,提出基于Super twisting滑模控制的以稳定动臂液压缸上腔压力为目标的能量回收控制方法.在建立关键元件的数学模型讨论能量回收时挖掘机动臂下降的平稳条件的基础上,针对上腔压力控制和下腔压力控制2种情况,对比分析外力扰动对下降速度的影响;设计Super twisting滑模能量回收控制器实现压力的稳定控制,证明压力稳定滑模控制器的稳定性.通过AMESIM进行系统仿真,结果表明:以下腔压力为控制目标和以上腔压力为控制目标的液压挖掘机动臂势能回收控制方法能够满足动臂势能回收时平稳下降,其中,以上腔压力为控制目标有较好的抗外力扰动能力,且更容易确定控制目标.

Abstract:
A new boom potential energy recovery schema for hydraulic excavator was proposed to maintain the stability of boom lowering down velocity based on the pressure super twisting sliding mode control of the upper side on excavator boom cylintlers. The mathematical models of the key hydraulic elements were introduced, and the necessary stability condition of boom lowering down was discussed. The lowering down speed disturbance caused by the external force was analyzed for the upper side pressure control and the lower side pressure control of excavator boom cylinders. The super twisting sliding mode controller was presented and the stability of them was proved for the two schemas. Simulation in AMESIM was conducted. Results show that both the upper side and the lower side excavator boom cylinder pressure control of the potential energy recovery are stable. The upper side pressure control method has better anti disturbance ability, and it is much object to set the control object.
出版日期: 2016-02-01
:  TH 137  
基金资助:

国家“863”高技术研究发展计划资助项目(2010AA044401).

通讯作者: 管成,男,副教授.ORCID: 0000 0002 4690 4385.     E-mail: guan@zju.edu.cn
作者简介: 王飞(1983—),男,博士生,从事机械工程动力节能控制和挖掘机器人控制等研究.ORCID: 0000 0002 5825 5263. E-mail: wf_car@163.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王飞, 管成, 肖扬, 李威. 挖掘机动臂势能回收系统的压力滑模控制[J]. 浙江大学学报(工学版), 10.3785/j.issn.1008-973X.2016.02.002.

WANG Fei, GUAN Cheng, XIAO Yang, LI Wei. Pressure sliding mode control of hydraulic excavator boom potential energy recovery. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 10.3785/j.issn.1008-973X.2016.02.002.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2016.02.002        http://www.zjujournals.com/eng/CN/Y2016/V50/I2/201

[1] 管成,林名润,吴超,等.油液混合动力挖掘机动臂势能回收系统[J].计算机集成制造系统,2012,18(3): 583-589.
GUAN Cheng, LIN Ming run, WU Chao, et al. Recovery system of boom energy in hydraulic hybrid excavators [J]. Computer Integrated Manufacturing Systems, 2012,18(3): 583-589.
[2] 裴磊,管成,邱清盈.混合动力挖掘机动臂势能回收系统研究[J].机床与液压,2009,37(3): 64-67.
PEI Lei, GUAN Cheng, QIU Qing ying. Research of boom energy recovery system in hybrid excavator [J]. Machine Tool & Hydraulics, 2009,37(3): 64-67.
[3] 赵丁选,陈明东,戴群亮,等.油液混合动力液压挖掘机动臂势能回收系统[J].吉林大学学报:工学版,2011,41(1): 150-154.
ZHAO Ding xuan, CHEN Ming dong, DAI Qun liang. System of arm potential energy recovery in hybrid hydraulic excavators [J]. Journal of Jilin University: Engineering and Technology Edition, 2011, 41(1): 150-154.
[4] 林潇,管成,裴磊,等.混合动力液压挖掘机动臂势能回收系统[J].农业机械学报,2009,40(4): 96-101.
LIN Xiao, GUAN Cheng, PEI Lei, et al. Research on the system of arm potential energy recovery in hybrid hydraulic excavators [J]. Transactions of the Chinese Society of Agricultural Machinery, 2009,40(4): 96-101.
[5] 王庆丰.油电混合动力挖掘机的关键技术研究[J].机械工程学报,2013,49(20):123-129.
WANG Qing feng. Research on key technology of oil electric hybrid excavator [J]. Journal of Mechanical Engineering, 2013, 49(20): 123-129.
[6] WANG Tao, WANG Qing feng, LIN Tian liang. Improvement of boom control performance for hydraulic excavator with potential energy recovery [J]. Automation in Construction, 2013, 30: 161-169.
[7] 管成,王飞,肖扬,等.液压挖掘机能量优化系统:中国,CN102561451A[P]. 2012-0711.
GUAN Chen, WANG Fei, XIAO Yang, et al. Hydran, lic excavator engergy op tim alsystem: China: CN102561451A[P]. 2002-0711.
[8] GUAN Cheng, PAN Shuang xia. Adaptive sliding mode control of eletro hydraulic system with nonlinear parameters [J]. Control Engineering Practice, 2008, 16(11): 1275-1284.
[9] LEVANT A. Principles of 2 sliding mode design [J]. Automatica, 2007, 43(4): 576-586.
[10] LEVANT A. Robust exact differentiation via sliding mode technique [J]. Automatica, 1998, 34(3): 379-384.
[11] SHTESSEL Y. EDWARDS C, FRIDMAN L. Sliding mode control and observation [M]. New York: Springer, 2014.
[12] UTKIN V, GULDNER J, SHI J. Sliding mode control in electro mechanical systems: sencond edition [M]. Boca Raton: Taylor & Francis Group, LLC, 2009, 54-62.

[1] 欧阳小平, 赵天菲, 李锋, 杨上保, 朱莹, 杨华勇. 飞机液压系统流量负载模拟器的变速积分PI控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1111-1118.
[2] 丁孺琦, 徐兵, 张军辉. 负载口独立控制系统压力速度复合控制的耦合特性[J]. 浙江大学学报(工学版), 2017, 51(6): 1126-1134.
[3] 张强, 魏建华, 时文卓. 采用软溢流模糊PID控制器的液压垫压边力控制[J]. 浙江大学学报(工学版), 2017, 51(6): 1143-1152.
[4] 倪敬, 冯国栋, 王志强, 高殿荣, 许明. 内曲线式端面配流水液压马达的优化设计[J]. 浙江大学学报(工学版), 2017, 51(5): 946-953.
[5] 丁加新, 陈英龙, 周华. 水辅成型浮动芯注射对制品残余壁厚的影响[J]. 浙江大学学报(工学版), 2017, 51(5): 937-945.
[6] 徐兵, 苏琦, 张军辉, 陆振宇. 比例放大器驱动电路特性分析及控制器设计[J]. 浙江大学学报(工学版), 2017, 51(4): 800-806.
[7] 杜睿龙, 陈英龙, 周华, 王佳. 新型高速单柱塞轴向柱塞泵配流机构[J]. 浙江大学学报(工学版), 2016, 50(10): 1902-1910.
[8] 王建森, 刘耀林, 冀宏, 王鹏飞. 非全周开口滑阀运动过程液动力数值计算[J]. 浙江大学学报(工学版), 2016, 50(10): 1922-1926.
[9] 胡小东, 顾临怡, 张范蒙. 应用于数字变量马达的高速开关阀[J]. 浙江大学学报(工学版), 2016, 50(8): 1551-1560.
[10] 权凌霄, 李东, 刘嵩,李长春, 孔祥东. 膨胀环频域特性影响因素分析[J]. 浙江大学学报(工学版), 2016, 50(6): 1065-1072.
[11] 赵鹏宇,陈英龙,周华,杨华勇. 油液混合动力挖掘机势能回收及能量管理策略[J]. 浙江大学学报(工学版), 2016, 50(5): 893-901.
[12] 廖湘平,龚国芳,彭雄斌,吴伟强. 基于黏性耦合机理的TBM刀盘脱困特性[J]. 浙江大学学报(工学版), 2016, 50(5): 902-912.
[13] 赵鹏宇, 陈英龙, 孙军, 周华. 基于液压平衡的试油试采系统建模与仿真[J]. 浙江大学学报(工学版), 2016, 50(4): 650-656.
[14] 王玄, 陶建峰, 张峰榕, 吴亚瑾, 刘成良. 泵控非对称液压缸系统高精度位置控制方法[J]. 浙江大学学报(工学版), 2016, 50(4): 597-602.
[15] 刘统, 龚国芳, 彭左, 吴伟强, 彭雄斌. 基于液压变压器的TBM刀盘混合驱动系统[J]. 浙江大学学报(工学版), 2016, 50(3): 419-427.