土木工程、交通工程 |
|
|
|
|
网络级道路交通运行状态的深度学习识别方法 |
罗义凯1( ),辛苡琳2,徐金华1,陈桂珍1,李岩1,*( ) |
1. 长安大学 运输工程学院,陕西 西安 710064 2. 比亚迪汽车有限公司,陕西 西安 710018 |
|
Deep learning method for recognizing network-level road traffic state |
Yikai LUO1( ),Yilin XIN2,Jinhua XU1,Guizhen CHEN1,Yan LI1,*( ) |
1. College of Transportation Engineering, Chang’an University, Xi’an 710064, China 2. BYD Automobile Limited Company, Xi’an 710018, China |
引用本文:
罗义凯,辛苡琳,徐金华,陈桂珍,李岩. 网络级道路交通运行状态的深度学习识别方法[J]. 浙江大学学报(工学版), 2025, 59(5): 1083-1091.
Yikai LUO,Yilin XIN,Jinhua XU,Guizhen CHEN,Yan LI. Deep learning method for recognizing network-level road traffic state. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 1083-1091.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.021
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I5/1083
|
1 |
张琦, 陈红, 周继彪, 等 道路开口对临近交叉口交通安全的影响[J]. 浙江大学学报: 工学版, 2021, 55 (4): 720- 726 ZHANG Qi, CHEN Hong, ZHOU Jibiao, et al Effect of roadway access on traffic safety at adjacent intersection[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (4): 720- 726
|
2 |
XIE J Y, GIRSHICK R, FARHADI A. Unsupervised deep embedding for clustering analysis [C]// International Conference on Machine Learning . New York: JMLR, 2016: 478-487.
|
3 |
黎茂盛, 李杭聪 基于交叉口车牌识别数据的网络交通状态分类方法[J]. 哈尔滨工业大学学报, 2023, 55 (11): 82- 90 LI Maosheng, LI Hangcong Classification method of network traffic state based on electronic police data at intersections[J]. Journal of Harbin Institute of Technology, 2023, 55 (11): 82- 90
|
4 |
李岩, 王泰州, 徐金华, 等 面向动态交通分配的交通需求深度学习预测方法[J]. 交通运输系统工程与信息, 2024, 24 (1): 115- 123 LI Yan, WANG Taizhou, XV Jinhua, et al Traffic demand prediction method based on deep learning for dynamic traffic assignment[J]. Journal of Transportation Systems Engineering and Information Technology, 2024, 24 (1): 115- 123
|
5 |
JAVANI B, BABAZADEH A, CEDRER A Path-based capacity-restrained dynamic traffic assignment algorithm[J]. Transportmetrica B: Transport Dynamics, 2019, 7 (1): 741- 746
doi: 10.1080/21680566.2018.1496861
|
6 |
郭璘, 周继彪, 董升, 等 基于改进K-means算法的城市道路交通事故分析[J]. 中国公路学报, 2018, 31 (4): 270- 279 GUO Lin, ZHOU Jibiao, DONG Sheng, et al Analysis of urban road traffic accidents based on improved k-means algorithm[J]. China Journal of Highway and Transport, 2018, 31 (4): 270- 279
|
7 |
XU J H, LUO W B, LI Y, et al A multi-directional recurrent graph convolutional network model for reconstructing traffic spatiotemporal diagram[J]. Transportation Letters, 2024, 16 (5): 405- 415
doi: 10.1080/19427867.2023.2198829
|
8 |
苏俊杰, 柴干, 季文韬 基于投影寻踪的快速路交织区交通状态识别方法[J]. 交通信息与安全, 2019, 37 (2): 114- 119 SU Junjie, CHAI Gan, JI Wentao Traffic state discrimination method for interchange areas in expressways based on projection pursuit[J]. Journal of Transport Information and Safety, 2019, 37 (2): 114- 119
|
9 |
李晓璐, 于昕明, 杜崇, 等 基于权值优化的 FCM-MSVM 算法及其在高速公路状态识别中的应用[J]. 北京交通大学学报, 2018, 42 (4): 72- 78 LI Xiaolu, YU Xinming, DU Chong, et al FCM-MSVM algorithm based on weight optimization and its application in highway state discrimination[J]. Journal of Beijing Jiaotong University, 2018, 42 (4): 72- 78
|
10 |
LIU J, KHATTAK A J Delivering improved alerts, warnings, and control assistance using basic safety messages transmitted between connected vehicles[J]. Transportation Research Part C: Emerging Technologies, 2016, 68 (3): 83- 100
|
11 |
XU J H, LI Y R, LU W, et al A heterogeneous traffic spatio-temporal graph convolution model for traffic prediction[J]. Physica A: Statistical Mechanics and its Applications, 2024, 641: 129746
doi: 10.1016/j.physa.2024.129746
|
12 |
丁瑞, 刘俊, 蒋艳, 等 基于车辆加速度数据的互通立交匝道驾驶风险分析[J]. 交通信息与安全, 2021, 39 (1): 17- 25 DING Rui, LIU Jun, JIANG Yan, et al Driving risks of interchange ramps based on vehicle acceleration data[J]. Journal of Transport Information and Safety, 2021, 39 (1): 17- 25
|
13 |
张鑫, 张卫华 快速路合流区主线不同交通状态下的安全性分析[J]. 吉林大学学报: 工学版, 2022, 52 (6): 1308- 1314 ZHANG Xin, ZHANG Weihua Safety analysis of main line under different traffic conditions in expressway confluence area[J]. Journal of Jilin University: Engineering and Technology Edition, 2022, 52 (6): 1308- 1314
|
14 |
ZENG Q, GUO Q, WONG S C, et al Jointly modeling area-level crash rates by severity: a Bayesian multivariate random-parameters spatio-temporal Tobit regression[J]. Transportmetrica A: Transport Science, 2019, 15 (2): 1867- 1884
doi: 10.1080/23249935.2019.1652867
|
15 |
李岩, 曾明哲, 朱才华, 等 基于多点线圈联合数据的高速公路匝道影响范围识别[J]. 交通运输系统工程与信息, 2022, 22 (3): 53- 62 LI Yan, ZENG Mingzhe, ZHU Caihua, et al Identification of freeway ramp influence areas based on multi-point loop data[J]. Journal of Transportation Systems Engineering and Information Technology, 2022, 22 (3): 53- 62
|
16 |
张存保, 彭汉辉, 张珊, 等 雾天高速公路实时交通安全状态评价方法[J]. 中国安全科学学报, 2017, 27 (4): 110- 115 ZHANG Cunbao, PENG Hanhui, ZHANG Shan, et al Real-time traffic safety evaluation method for freeway in fog[J]. China Safety Science Journal, 2017, 27 (4): 110- 115
|
17 |
MALIN F, NORROS I, INNAMAA S Accident risk of road and weather conditions on different road types[J]. Accident Analysis and Prevention, 2019, 122 (2): 181- 188
|
18 |
吴兵, 翟犇, 卢建涛, 等 基于安全风险的恶劣天气下高速公路建议车速确定方法[J]. 同济大学学报: 自然科学版, 2020, 48 (11): 1570- 1578 WU Bing, ZHAI Ben, LU Jiantao, et al Determination of freeway recommended speed based on safety risk under adverse weather conditions[J]. Journal of Tongji University: Natural Science, 2020, 48 (11): 1570- 1578
|
19 |
吕能超, 彭凌枫, 吴超仲, 等 基于视频轨迹参数的边缘率减速标线驾驶行为效果评价方法[J]. 安全与环境学报, 2021, 21 (2): 461- 469 LV Nengchao, PENG Lingfeng, WU Chaozhong, et al Valuative judgment of the driving behaviors of the edge rate deceleration bars based on the video trajectory parameters[J]. Journal of Safety and Environment, 2021, 21 (2): 461- 469
|
20 |
YUAN J, ABDELATY M, WANG L, et al Utilizing bluetooth and adaptive signal control data for real-time safety analysis on urban arterials[J]. Transportation Research Part C: Emerging Technologies, 2018, 97 (5): 114- 127
|
21 |
杨飞, 姜海航, 刘好德, 等 基于GPS轨迹数据的不同交通状态下交通方式识别流程优化方法[J]. 交通运输系统工程与信息, 2020, 20 (4): 83- 89 YANG Fei, JIANG Haihang, LIU Haode, et al Procedure optimization method based on GPS trajectory data for transportation mode recognition under different traffic conditions[J]. Journal of Transportation Systems Engineering and Information Technology, 2020, 20 (4): 83- 89
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|