Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (5): 964-972    DOI: 10.3785/j.issn.1008-973X.2025.05.010
计算机技术、信息工程     
5G-A车联网确定性网络中的语义通信系统
栾宏之1(),李书才1,李屹2,钱传杰2,*(),梅琼2
1. 山东电力工程咨询院有限公司 综合智慧能源部,山东 济南 250011
2. 江苏未来网络集团有限公司 战略项目部,江苏 南京 211111
Semantic communication system in deterministic networking for5G-advanced vehicular network
Hongzhi LUAN1(),Shucai LI1,Yi LI2,Chuanjie QIAN2,*(),Qiong MEI2
1. Comprehensive Smart Energy Department., Shandong Electric Power Engineering Consulting Institute Limited Company, Jinan 250011, China
2. Strategic Project Department, Jiangsu Future Network Group, Nanjing 211111, China
 全文: PDF(1055 KB)   HTML
摘要:

针对现有语义通信(SC)系统编码时间较长,无法直接应用于5G-Advanced技术框架下,需要处理大量高实时性、低延迟数据的智能车联网系统(V2X)中确定性网络(DN)的问题,提出针对5G-Advanced智能车联网中确定性网络设计的截止时间敏感的语义通信系统(DDA-SC). 该系统采用截止时间敏感的语义编码器,通过控制编码深度适应数据截止时间,确保在有效时间内完成编码与传输. 为了提高各编码截止时间下的传输可靠性,提出基于编码深度的信噪比感知网络. 该网络在训练时将SNR映射为编码深度相关的相关信噪比(R-SNR),利用注意力机制进行R-SNR感知,以在不同编码截止时间下更好地抵御信道噪声. 实验结果表明,当编码截止时间< 5 μs时,该系统在CARS-196汽车识别任务上的准确度较不考虑截止时间的系统提高80.31%以上. 结果表明,DDA-SC可以在极低编码截止时间下完成一般语义通信系统无法完成的任务,验证了该方法的有效性.

关键词: 车联网(V2X)语义通信5G-Advanced确定性网络联合信源信道编码    
Abstract:

A deadline-aware semantic communication (DDA-SC) system specifically tailored for deterministic network in 5G-Advanced intelligent vehicle-to-everything (V2X) environments was proposed in order to overcome the challenge of prolonged encoding time in current semantic communication (SC) systems, which impedes their direct deployment in deterministic networking (DN) for 5G-Advanced vehicle-to-everything (V2X) networks—particularly critical for intelligent transportation systems requiring high-throughput and low-latency data processing. A deadline-aware semantic encoder (DDA-SE) was employed, which adjusted the depth of semantic encoding to meet data deadlines, ensuring timely encoding and transmission. A signal-to-noise ratio (SNR) aware network based on encoding depth was introduced in order to enhance transmission reliability across different encoding deadlines. SNR was mapped to relevant signal-to-noise ratio (R-SNR) based on encoding depth during training, using an attention mechanism to sense R-SNR and better resist channel noise under various encoding deadlines. The experimental results show that this system achieve an accuracy improvement of over 80.31% in the CARS-196 vehicle identification task compared with systems that do not consider data deadlines when encoding deadlines are shorter than 5 microseconds. Results demonstrate that DDA-SC can accomplish tasks under extremely low encoding deadlines that are unachievable by conventional semantic communication systems, thus verifying the effectiveness of the method.

Key words: vehicle-to-everything (V2X)    semantic communication    5G-Advanced    deterministic networking    joint source and channel coding
收稿日期: 2024-07-12 出版日期: 2025-04-25
CLC:  TN 914  
基金资助: 北京市自然科学基金资助项目 (L222043).
通讯作者: 钱传杰     E-mail: Luanhongzhi@sdepci.com;qianchuanjie@fngroup.cn
作者简介: 栾宏之(1970—),男,高级工程师,从事5G-Advanced和车联网的研究. orcid.org/0009-0002-4168-4640. E-mail:Luanhongzhi@sdepci.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
栾宏之
李书才
李屹
钱传杰
梅琼

引用本文:

栾宏之,李书才,李屹,钱传杰,梅琼. 5G-A车联网确定性网络中的语义通信系统[J]. 浙江大学学报(工学版), 2025, 59(5): 964-972.

Hongzhi LUAN,Shucai LI,Yi LI,Chuanjie QIAN,Qiong MEI. Semantic communication system in deterministic networking for5G-advanced vehicular network. Journal of ZheJiang University (Engineering Science), 2025, 59(5): 964-972.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.05.010        https://www.zjujournals.com/eng/CN/Y2025/V59/I5/964

图 1  联合信源信道编码系统
图 2  截止时间敏感的语义通信系统
算法1 根据截止时间进行语义编码
输入:信源消息${\boldsymbol{x}}$.
需要:接收端反馈的信噪比$s$、编码器的参数集$({\boldsymbol{\theta}} ,{\boldsymbol{\varTheta}} ) = \{ ({{\boldsymbol{\theta}} _1},{{\boldsymbol{\varTheta}} _1}),({{\boldsymbol{\theta}} _2},{{\boldsymbol{\varTheta}} _2}), \cdots ,({{\boldsymbol{\theta}} _n},{{\boldsymbol{\varTheta}} _n})\} $、编码截止时间${T_{\text{s}}}$、编码开始时间${t_{{\text{start}}}}$、当前时间$ {t_{{\text{curr}}}} $、平均各编码层所需要的编码时间${t_{{\text{ave}}}}$、当前编码层编号$i$.
输出:传输符号${{\boldsymbol{T}}_{\boldsymbol{x}}}$.
1 初始化:${t_{{\text{start}}}} \leftarrow 0$, ${t_{{\text{curr}}}} \leftarrow 0$, $k \leftarrow 0$;
2 While ($ {t_{{\text{curr}}}} - {t_{{\text{start}}}}+{t_{{\text{ave}}}} \leqslant {T_{\text{s}}} $ AND $ k \leqslant n $) Do
3${\boldsymbol{x}} \leftarrow {f_{{{\boldsymbol{\varTheta}} _i}}}({f_{{{\boldsymbol{\theta}} _i}}}({\boldsymbol{x}}),s)$;
$ {{\boldsymbol{T}}_{\boldsymbol{x}}} \leftarrow {\boldsymbol{x}} $;
$i \leftarrow i+1$;
${t_{{\text{curr}}}} \leftarrow $当前时间;
4
5
6
7 Return ${{\boldsymbol{T}}_{\boldsymbol{x}}}$
  
图 3  基于编码深度的信噪比感知网络
图 4  截止时间敏感的语义通信系统的训练过程
算法2 截止时间敏感的语义通信系统的训练算法
输入:训练集${{D}_{\text{I}}} = \{ ({{\boldsymbol{x}}^{(k)}},{\boldsymbol{y}}_{{\text{truth}}}^{(k)}),k = 1,2, \cdots ,N\} $.
需要:初始化的补偿因子$\gamma = \{ {\gamma _1},{\gamma _2}, \cdots ,{\gamma _n}\} $、信道模拟函数${\mathrm{CH}}({{\boldsymbol{T}}_{\boldsymbol{x}}},s)$、编码器的参数集$({\boldsymbol{\theta}} ,{\boldsymbol{\varTheta}} ) = \{ ({{\boldsymbol{\theta}} _1}, {{\boldsymbol{\varTheta}} _1}), ({{\boldsymbol{\theta}} _2},{{\boldsymbol{\varTheta}} _2}), \cdots ,({{\boldsymbol{\theta}} _n},{{\boldsymbol{\varTheta}} _n})\} $、解码器参数${\boldsymbol{\phi}} $、训练轮次T、编码器参数的学习率$\alpha $、解码器参数的学习率$\beta $、当前迭代轮次$j$、总误差$L$.
输出:${\boldsymbol{\theta}} $${\boldsymbol{\phi}} $.
1 初始化:$j \leftarrow 0$,初始化${\boldsymbol{\theta}} $${\boldsymbol{\phi}} $;
2 对训练集${{D}_{\text{I}}}$中的样本随机排序;
3 While ($j < $T) Do
4 从0 dB到20 dB中随机采样一个SNR,记为$s$
5 For $k = 1,2, \cdots, N$ Do
6  $L \leftarrow 0$, ${\boldsymbol{z}}_0^{(k)} \leftarrow {{\boldsymbol{x}}^{(k)}}$;
7  For $i = 1 ,\cdots ,n$ Do
8    $ {\boldsymbol{z}}_i^{(k)} \leftarrow {f_{{{\boldsymbol{\varTheta}} _i}}}({f_{{{\boldsymbol{\theta}} _i}}}({\boldsymbol{z}}_{i - 1}^{(k)}),{\gamma _i} s)$;
9    $\hat {\boldsymbol{z}}_i^{(k)} \leftarrow {\mathrm{CH}}({\boldsymbol{z}}_i^{(k)},{\gamma _i} s)$;
10    $ {\boldsymbol{y}}_i^{(k)} \leftarrow {f_{\boldsymbol{\phi}} }(\hat {\boldsymbol{z}}_i^{(k)}) $;
11    $L \leftarrow L+L\;({\boldsymbol{y}}_i^{(k)},{\boldsymbol{y}}_{{\text{turth}}}^{(k)})$;
12  ${\boldsymbol{\theta}} \leftarrow {\boldsymbol{\theta}} - \alpha {\nabla _{\boldsymbol{\theta}} }L$; ${\boldsymbol{\varTheta}} \leftarrow {\boldsymbol{\varTheta}} - \alpha {\nabla _{\boldsymbol{\varTheta}} }L $; $\gamma \leftarrow \gamma - \alpha {\nabla _\gamma }L$;
  ${\boldsymbol{\phi}} \leftarrow {\boldsymbol{\phi}} - \beta {\nabla _{\boldsymbol{\phi}} }L$; $j \leftarrow j+1$;
13 Return ${\boldsymbol{\theta}} $,${\boldsymbol{\varTheta}} $,$\gamma $,${\boldsymbol{\phi}} $
  
组件名称结构名称结构尺寸
截止时间敏感的语义编码器图像重整维度224×224×3
图像块维度32×32×3
嵌入向量尺寸384
总编码层数10
多头/单头单头注意力
基于编码深度的信噪比感知网络自适应平均池化384→96
全连接层196×24
全连接层224×1
全连接层351×50
联合信源信道解码器线性层1图像块数量×1
线性层2嵌入向量尺寸×类别数量
表 1  截止时间敏感的语义通信系统的模型参数
超参数数值
学习率$\alpha = \beta = 0.001$
批量大小1 000
优化器Adam
损失函数交叉熵
训练轮次200
模型选择策略在验证集上性能最优早停
表 2  训练超参数的设置
图 5  编码深度对模型性能的影响
图 6  不同编码截止时间下的模型性能
图 7  不同信噪比下的模型性能
图 8  基于编码深度的信噪比感知网络的消融实验
2 ZHAI Shuo, QIAN Benhua, WANG Rui, et al. Overview of the development and application of vehicle networking technology [C]// Proceedings of the 24th China Conference on System Simulation Technology and Applications . Hefei: Hefei University of Technology Press, 2023.
3 曹志义 汽车智能制造中的工业物联网技术应用[J]. 汽车与新动力, 2023, 6 (5): 1- 4
CAO Zhiyi Application of industrial internet of things technology in intelligent manufacturing of automobiles[J]. Automobiles and New Power, 2023, 6 (5): 1- 4
4 张应辉, 李国腾, 韩刚, 等 5G车联网中安全高效的组播服务认证与密钥协商方案[J]. 电子与信息学报, 2024, 46 (7): 3026- 3035
ZHANG Yinghui, LI Guoteng, HAN Gang, et al A secure and efficient multicast service authentication and key agreement scheme in 5G vehicular networks[J]. Journal of Electronics and Information Technology, 2024, 46 (7): 3026- 3035
doi: 10.11999/JEIT231118
5 黄晓舸, 吴雨航, 尹宏博, 等 车联网中基于有向无环图区块链的个性化联邦互蒸馏学习方法[J]. 电子与信息学报, 2024, 46 (7): 2821- 2830
HUANG Xiaoge, WU Yuhang, YIN Hongbo, et al A personalized federated mutual distillation learning method based on directed acyclic graph blockchain in vehicular networks[J]. Journal of Electronics and Information Technology, 2024, 46 (7): 2821- 2830
doi: 10.11999/JEIT230976
6 王毅成 第六代WiFi技术探析及其与5G关系的探究[J]. 信息通信, 2020, 29 (5): 1- 3
WANG Yicheng Analysis of sixth generation WiFi technology and its relationship with 5G[J]. Information and Communications, 2020, 29 (5): 1- 3
7 肖扬 5G-Advanced扩展现实增强技术研究[J]. 电信科学, 2024, 40 (4): 160- 169
XIAO Yang Research on 5G-advanced extended reality enhancement technology[J]. Telecommunications Science, 2024, 40 (4): 160- 169
8 YANG Y, GUO C, LIU F, et al Semantic communications with artificial intelligence tasks: reducing bandwidth requirements and improving artificial intelligence task performance[J]. IEEE Industrial Electronics Magazine, 2023, 17 (3): 4- 13
doi: 10.1109/MIE.2022.3174331
9 徐英姿, 刘原, 时梦然, 等 语义在通信中的应用综述[J]. 电信科学, 2022, 38 (Suppl.1): 43- 59
1 濮赞成 第五代移动通信技术应用开发研究[J]. 现代工业经济和信息化, 2018, 8 (14): 117- 118
PU Zancheng Research on application development of fifth generation mobile communication technology[J]. Modern Industrial Economy and Informatization, 2018, 8 (14): 117- 118
9 XU Yingzi, LIU Yuan, SHI Mengran, et al Overview of the application of semantics in communication[J]. Telecommunications Science, 2022, 38 (Suppl.1): 43- 59
10 LIU C, GUO C, YANG Y, et al Adaptable semantic compression and resource allocation for task-oriented communications[J]. IEEE Transactions on Cognitive Communications and Networking, 2023, 10 (3): 769- 782
2 翟硕, 钱本华, 王睿, 等. 车联网技术的发展与应用综述[C]//第24届中国系统仿真技术及其应用学术年会论文集. 合肥: 合肥工业大学出版社, 2023.
11 乔萱, 李宗辉, 刘强, 等 无线时间敏感网络技术综述[J]. 软件学报, 2025, 36 (1): 184- 202
QIAO Xuan, LI Zonghui, LIU Qiang, et al Overview of wireless time-sensitive networking technology[J]. Journal of Software, 2025, 36 (1): 184- 202
12 潘强. 面向图像分割的车载语义通信技术研究[D]. 北京: 北京邮电大学, 2023.
PAN Qiang. Research on semantic communication technology for image segmentation in vehicular networks [D]. Beijing: Beijing University of Posts and Telecommunications, 2023.
13 陈九九. 语义驱动的车联网资源分配算法研究[D]. 北京: 北京邮电大学, 2024.
CHEN Jiujiu. Research on semantic-driven resource allocation algorithms in vehicle networking [D]. Beijing: Beijing University of Posts and Telecommunications, 2024.
14 FENG Y, SHEN H, SHAN Z, et al. Semantic communication for edge intelligence enabled autonomous driving system [J]. IEEE Network, 2024, 39(2): 149-157.
15 SUN L, YANG Y, CHEN M, et al Adaptive information bottleneck guided joint source and channel coding for image transmission[J]. IEEE Journal on Selected Areas in Communications, 2023, 41 (8): 2628- 2644
doi: 10.1109/JSAC.2023.3288238
16 RUMELHART D E, HINTON G E, WILLIAMS R J Learning representations by back-propagating errors[J]. Nature, 1986, 323 (1986): 533- 536
17 DENG L The MNIST database of handwritten digit images for machine learning research [Best of the Web][J]. IEEE Signal Processing Magazine, 2012, 29 (6): 141- 142
doi: 10.1109/MSP.2012.2211477
[1] 李勇,刘志强,田茂幸,贾松霖. 基于全局相关语义重要性的语义压缩算法[J]. 浙江大学学报(工学版), 2025, 59(4): 795-803.
[2] 郭锐 刘济林. 基于自适应分割和非规则LDPC的图像编码[J]. J4, 2007, 41(8): 1298-1302.