计算机技术与控制工程 |
|
|
|
|
基于全局相关语义重要性的语义压缩算法 |
李勇1,2( ),刘志强1,田茂幸2,*( ),贾松霖3 |
1. 西北工业大学 网络空间安全学院,陕西 西安 710072 2. 兴唐通信科技有限公司,北京 100191 3. 航天东方红卫星有限公司,北京 100094 |
|
Semantic compression algorithm based on global correlated semantic importance |
Yong LI1,2( ),Zhiqiang LIU1,Maoxing TIAN2,*( ),Songlin JIA3 |
1. School of Cybersecurity, Northwestern Polytechnical University, Xi’an 710072, China 2. Xingtang Communication Technology Limited Company, Beijing 100191, China 3. Aerospace DFH Satellite Limited Company, Beijing 100094, China |
引用本文:
李勇,刘志强,田茂幸,贾松霖. 基于全局相关语义重要性的语义压缩算法[J]. 浙江大学学报(工学版), 2025, 59(4): 795-803.
Yong LI,Zhiqiang LIU,Maoxing TIAN,Songlin JIA. Semantic compression algorithm based on global correlated semantic importance. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 795-803.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.015
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I4/795
|
1 |
WEAVER W Recent contributions to the mathematical theory of communication[J]. ETC: A Review of General Semantics, 1953, 10 (4): 261- 281
|
2 |
SHANNON C E A mathematical theory of communication[J]. The Bell System Technical Journal, 1948, 27 (3): 379- 423
doi: 10.1002/j.1538-7305.1948.tb01338.x
|
3 |
张平, 戴金晟, 张育铭, 等 面向语义通信的非线性变换编码[J]. 通信学报, 2023, 44 (4): 1- 14 ZHANG Ping, DAI Jincheng, ZHANG Yuming, et al Nonlinear transform coding for semantic communications[J]. Journal on Communications, 2023, 44 (4): 1- 14
doi: 10.11959/j.issn.1000-436x.2023087
|
4 |
XIE H, QIN Z, LI G Y, et al Deep learning enabled semantic communication systems[J]. IEEE Transactions on Signal Processing, 2021, 69: 2663- 2675
doi: 10.1109/TSP.2021.3071210
|
5 |
TONG H, YANG Z, WANG S, et al. Federated learning based audio semantic communication over wireless networks [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
|
6 |
HUANG D, TAO X, GAO F, et al. Deep learning-based image semantic coding for semantic communications [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
|
7 |
PATWA N, AHUJA N, SOMAYAZULU S, et al. Semantic-preserving image compression [C]// Proceedings of the IEEE International Conference on Image Processing . Abu Dhabi: IEEE, 2020: 1281–1285.
|
8 |
SUN Q, GUO C, YANG Y, et al. Deep joint source-channel coding for wireless image transmission with semantic importance [C]// Proceedings of the IEEE 96th Vehicular Technology Conference . London: IEEE, 2022: 1–7.
|
9 |
WANG J, WANG S, DAI J, et al. Perceptual learned source-channel coding for high-fidelity image semantic transmission [C]// Proceedings of the GLOBECOM 2022-2022 IEEE Global Communications Conference . Rio de Janeiro: IEEE, 2022: 3959–3964.
|
10 |
WANG Q, SHEN L, SHI Y Recognition-driven compressed image generation using semantic-prior information[J]. IEEE Signal Processing Letters, 2020, 27: 1150- 1154
doi: 10.1109/LSP.2020.3004967
|
11 |
HU Q, ZHANG G, QIN Z, et al. Robust semantic communications against semantic noise [C]// Proceedings of the IEEE 96th Vehicular Technology Conference . London: IEEE, 2022: 1–6.
|
12 |
牛冠冲, 刘飞翔, 杨雯, 等 面向多任务的语义通信架构设计与实现[J]. 移动通信, 2024, 48 (2): 47- 55 NIU Guanchong, LIU Feixiang, YANG Wen, et al Design and implementation of semantic communication for goal-oriented multi-tasking[J]. Mobile Communications, 2024, 48 (2): 47- 55
doi: 10.3969/j.issn.1006-1010.20240109-0001
|
13 |
莫肇豪, 韦宝典, 马啸 基于上下文语义相似度的软压缩方法[J]. 移动通信, 2024, 48 (2): 90- 96 MO Zhaohao, WEI Baodian, MA Xiao Soft compression method based on context-semantic similarity[J]. Mobile Communications, 2024, 48 (2): 90- 96
doi: 10.3969/j.issn.1006-1010.20240111-0002
|
14 |
KUTAY E, YENER A. Classification-oriented semantic wireless communications [C]// 2024 IEEE International Conference on Acoustics, Speech and Signal Processing . Seoul: IEEE, 2024: 9096–9100.
|
15 |
GRASSUCCI E, PARK J, BARBAROSSA S, et al. Generative AI meets semantic communication: evolution and revolution of communication tasks [EB/OL]. (2024−01−10)[2024−07−15]. https://arxiv.org/pdf/2401.06803.
|
16 |
LI N, IOSIFIDIS A, ZHANG Q. Dynamic semantic compression for CNN inference in multi-access edge computing: a graph reinforcement learning-based autoencoder [EB/OL]. (2024−01−19)[2024−07−15]. https://arxiv.org/pdf/2401.12167.
|
17 |
WANG C, HAN Y, WANG W An end-to-end deep learning image compression framework based on semantic analysis[J]. Applied Sciences, 2019, 9 (17): 3580
doi: 10.3390/app9173580
|
18 |
SEBAI D. Multi-rate deep semantic image compression with quantized modulated autoencoder [C]// Proceedings of the IEEE 23rd International Workshop on Multimedia Signal Processing . Tampere: IEEE, 2021: 1–6.
|
19 |
DONG C, LIANG H, XU X, et al Semantic communication system based on semantic slice models propagation[J]. IEEE Journal on Selected Areas in Communications, 2023, 41 (1): 202- 213
doi: 10.1109/JSAC.2022.3221948
|
20 |
何晨光, 黄声显, 陈舒怡, 等 基于语义通信的低比特率图像语义编码方法[J]. 信号处理, 2023, 39 (3): 410- 418 HE Chenguang, HUANG Shengxian, CHEN Shuyi, et al A low bitrates image semantic coding method based on semantic communication[J]. Journal of Signal Processing, 2023, 39 (3): 410- 418
|
21 |
LUO S H, YANG Y Z, YIN Y L, et al. DeepSIC: deep semantic image compression [C]// Neural Information Processing . [S. l.]: Springer, 2018: 96–106.
|
22 |
PARK S, SIMEONE O, KANG J. End-to-end fast training of communication links without a channel model via online meta-learning [C]// Proceedings of the IEEE 21st International Workshop on Signal Processing Advances in Wireless Communications . Atlanta: IEEE, 2020: 1–5.
|
23 |
JIANG S, LIU Y, ZHANG Y, et al Reliable semantic communication system enabled by knowledge graph[J]. Entropy, 2022, 24 (6): 846
doi: 10.3390/e24060846
|
24 |
WANG Y, CHEN M, SAAD W, et al. Performance optimization for semantic communications: an attention-based learning approach [C]// Proceedings of the IEEE Global Communications Conference . Madrid: IEEE, 2021: 1–6.
|
25 |
刘传宏, 郭彩丽, 杨洋, 等 人工智能物联网中面向智能任务的语义通信方法[J]. 通信学报, 2021, 42 (11): 97- 108 LIU Chuanhong, GUO Caili, YANG Yang, et al Intelligent task-oriented semantic communication method in artificial intelligence of things[J]. Journal on Communications, 2021, 42 (11): 97- 108
doi: 10.11959/j.issn.1000-436x.2021214
|
26 |
ZITNICK C L, VEDANTAM R, PARIKH D Adopting abstract images for semantic scene understanding[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2016, 38 (4): 627- 638
doi: 10.1109/TPAMI.2014.2366143
|
27 |
KANG B Y. A novel approach to semantic indexing based on concept [C]// Proceedings of the 41st Annual Meeting on Association for Computational Linguistics . Sapporo: ACL, 2003: 44–49.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|