机械与能源工程 |
|
|
|
|
超流氦流场可视化技术研究进展 |
胡应璇1( ),李国良1,黄雯琳1,张俊佩2,童欣2,邱利民1,包士然1,*( ) |
1. 浙江大学 制冷与低温研究所,浙江 杭州 310027 2. 中国科学院高能物理研究所,北京 100049 |
|
Progress in flow visualization techniques in superfluid helium |
Yingxuan HU1( ),Guoliang LI1,Wenlin HUANG1,Junpei ZHANG2,Xin TONG2,Limin QIU1,Shiran BAO1,*( ) |
1. Institute of Refrigeration and Cryogenics , Zhejiang University, Hangzhou 310027, China 2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China |
引用本文:
胡应璇,李国良,黄雯琳,张俊佩,童欣,邱利民,包士然. 超流氦流场可视化技术研究进展[J]. 浙江大学学报(工学版), 2025, 59(4): 853-862.
Yingxuan HU,Guoliang LI,Wenlin HUANG,Junpei ZHANG,Xin TONG,Limin QIU,Shiran BAO. Progress in flow visualization techniques in superfluid helium. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 853-862.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.021
或
https://www.zjujournals.com/eng/CN/Y2025/V59/I4/853
|
1 |
王贻芳 建设国际领先的大科学装置奠定科技强国的基础[J]. 中国科学院院刊, 2017, 32 (5): 483- 487 WANG Yifang Build world-leading large scientific facilities, lay foudation for a powerful country in science[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (5): 483- 487
|
2 |
PADAMSEE H The science and technology of superconducting cavities for accelerators[J]. Superconductor Science and Technology, 2001, 14 (4): R28
doi: 10.1088/0953-2048/14/4/202
|
3 |
张鹏, 王如竹. 超流氦传热[M]. 北京: 科学出版社, 2009.
|
4 |
孙良瑞, 葛锐, 李少鹏, 等 先进光源技术研发与测试平台(PAPS)2 K超流氦低温系统流程设计与计算[J]. 低温工程, 2021, (3): 58- 63 SUN Liangrui, GE Rui, LI Shaopeng, et al Design and calculation of helium cryogenic system of platform of advanced photon source (PAPS)[J]. Cryogenics, 2021, (3): 58- 63
doi: 10.3969/j.issn.1000-6516.2021.03.011
|
5 |
DALESANDRO A, KALUZNY J, KLEBANER A Thermodynamic analyses of the LCLS-II cryogenic distribution system[J]. IEEE Transactions on Applied Superconductivity, 2016, 27 (4):
|
6 |
XU T, CASAGRANDE F, GANNI V, et al. Status of cryogenic system for spallation neutron source’s superconducting radiofrequency test facility at Oak Ridge National Lab [C]// AIP Conference Proceedings . Spokane: AIP, 2012: 1085–1091.
|
7 |
YOSHIDA J, HOSOYAMA K, NAKAI H, et al. Development of STF cryogenic system in KEK [C]// 2007 IEEE Particle Accelerator Conference . Albuquerque: IEEE, 2007: 2701–2703.
|
8 |
RODE C H, TEAM J G P. Jefferson lab 12 GeV CEBAF upgrade [C]// AIP Conference Proceedings . Tucson: AIP, 2010: 26–33.
|
9 |
ZHANG P, MURAKAMI M Three dimensionality of pulsed second-sound waves in He II[J]. Physical Review B, 2006, 74 (2): 024528
doi: 10.1103/PhysRevB.74.024528
|
10 |
张鹏, 王如竹, 村上正秀 超流氦浴中的热波传热研究[J]. 物理学报, 2002, 51 (6): 1350- 1354 ZHANG Peng, WANG Ruzhu, MURAKAMI Masahide Thermal wave heat transfer in the bath of superfluid helium[J]. Acta Physica Sinica, 2002, 51 (6): 1350- 1354
|
11 |
LANE C T, FAIRBANK H A, FAIRBANK W M Second sound in liquid helium II[J]. Physical Review, 1947, 71 (9): 600- 605
doi: 10.1103/PhysRev.71.600
|
12 |
PITAEVSKII L P Vortex lines in an imperfect Bose gas[J]. Soviet Physics, JETP, 1961, 13 (2): 451- 454
|
13 |
LONDON F The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy[J]. Nature, 1938, 141: 643- 644
doi: 10.1038/141643a0
|
14 |
VAN SCIVER S W, TIMMERHAUS K, CLARK A F. Helium cryogenics [M]. New York: Springer, 2012.
|
15 |
ADRIAN R J, WESTERWEEL J. Particle image velocimetry [M]. Cambridge: Cambridge University Press, 2011.
|
16 |
范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002.
|
17 |
ADAMCZYK A A, RIMAI L 2-Dimensional particle tracking velocimetry (PTV): technique and image processing algorithms[J]. Experiments in Fluids, 1988, 6: 373- 380
doi: 10.1007/BF00196482
|
18 |
BEWLEY G P, LATHROP D P, SREENIVASAN K R Visualization of quantized vortices[J]. Nature, 2006, 441: 588
doi: 10.1038/441588a
|
19 |
WILLIAMS G A, PACKARD R E Photographs of quantized vortex lines in rotating He II[J]. Physical Review Letters, 1974, 33: 280
doi: 10.1103/PhysRevLett.33.280
|
20 |
TANG Y, GUO W, KOBAYASHI H, et al Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation[J]. Nature Communications, 2023, 14: 2941
doi: 10.1038/s41467-023-38787-w
|
21 |
KAPITZA P Viscosity of liquid helium below the λ-point[J]. Nature, 1938, 141: 74
doi: 10.1038/141074a0
|
22 |
ARP V Heat transport through helium II[J]. Cryogenics, 1970, 10 (2): 96- 105
doi: 10.1016/0011-2275(70)90078-0
|
23 |
LANDAU L. The theory of superfluidity of helium II [M]// KHALATNIKOV I M. An introduction to the theory of superfluidity . Boca Raton: CRC Press, 2018: 185–204.
|
24 |
TISZA L The theory of liquid helium[J]. Physical Review, 1947, 72: 838
doi: 10.1103/PhysRev.72.838
|
25 |
MARIS H J, XIONG Q Nucleation of bubbles in liquid helium at negative pressure[J]. Physical Review Letters, 1989, 63: 1078
doi: 10.1103/PhysRevLett.63.1078
|
26 |
CLASSEN J, SU C K, MARIS H J Observation of exploding electron bubbles in liquid helium[J]. Physical Review Letters, 1996, 77: 2006
doi: 10.1103/PhysRevLett.77.2006
|
27 |
GHOSH A, MARIS H J Measurement of the lifetime of excited-state electron bubbles in superfluid helium[J]. Physical Review B, 2005, 72: 054512
doi: 10.1103/PhysRevB.72.054512
|
28 |
KONSTANTINOV D, MARIS H J Detection of excited-state electron bubbles in superfluid helium[J]. Physical Review Letters, 2003, 90: 025302
doi: 10.1103/PhysRevLett.90.025302
|
29 |
GUO W, JIN D, SEIDEL G M, et al Experiments with single electrons in liquid helium[J]. Physical Review B, 2009, 79: 054515
doi: 10.1103/PhysRevB.79.054515
|
30 |
JIN D, MARIS H J A study of the motion of particles in superfluid helium-4 and interactions with vortices[J]. Journal of Low Temperature Physics, 2011, 162: 329- 339
doi: 10.1007/s10909-010-0237-9
|
31 |
MURAKAMI M, ICHIKAWA N Flow visualization study of thermal counterflow jet in He II[J]. Cryogenics, 1989, 29 (4): 438- 443
doi: 10.1016/0011-2275(89)90276-2
|
32 |
VAN SCIVER S W, FUZIER S, XU T Particle image velocimetry studies of counterflow heat transport in superfluid helium II[J]. Journal of Low Temperature Physics, 2007, 148: 225- 233
doi: 10.1007/s10909-007-9375-0
|
33 |
ZHANG T, VAN SCIVER S W The motion of micron-sized particles in He II counterflow as observed by the PIV technique[J]. Journal of Low Temperature Physics, 2005, 138: 865- 870
doi: 10.1007/s10909-005-2316-x
|
34 |
ZHANG T, VAN SCIVER S W Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He (II))[J]. Nature Physics, 2005, 1: 36- 38
doi: 10.1038/nphys114
|
35 |
金滔, FUZIER Sylvie, VAN SCIVER Steven 超流氦中喷射流流场的PIV可视化观察[J]. 浙江大学学报: 工学版, 2010, 44 (3): 473- 475 JIN Tao, FUZIER Sylvie, VAN SCIVER Steven Observation of jet flow into superfluid helium using particle image velocimetry technique[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (3): 473- 475
|
36 |
SOULAINE C, QUINTARD M, BAUDOUY B, et al Numerical investigation of thermal counterflow of He II past cylinders[J]. Physical Review Letters, 2017, 118: 074506
doi: 10.1103/PhysRevLett.118.074506
|
37 |
SOULAINE C, QUINTARD M, ALLAIN H, et al A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model[J]. Computer Physics Communications, 2015, 187: 20- 28
doi: 10.1016/j.cpc.2014.10.006
|
38 |
MOROSHKIN P, KONO K Imaging and time-resolved study of laser-induced fluorescence of dysprosium atoms injected into superfluid helium[J]. Physical Review B, 2020, 101: 134520
doi: 10.1103/PhysRevB.101.134520
|
39 |
MINOWA Y, AOYAGI S, INUI S, et al Visualization of quantized vortex reconnection enabled by laser ablation[J]. Science Advances, 2022, 8 (18): eabn1143
doi: 10.1126/sciadv.abn1143
|
40 |
CHOPRA K L, BROWN J B Suspension of particles in liquid helium[J]. Physical Review, 1957, 108: 157
|
41 |
MURAKAMI M, TAKAKOSHI T, MAEDA M, et al Application of particle image velocimetry for measuring He II thermal counterflow jets[J]. Cryogenics, 2009, 49 (10): 543- 548
doi: 10.1016/j.cryogenics.2008.10.020
|
42 |
NAKANO A, MURAKAMI M Velocity measurement of He II thermal counterflow jet accompanied by second sound Helmholtz oscillation[J]. Cryogenics, 1994, 34 (3): 179- 185
doi: 10.1016/0011-2275(94)90167-8
|
43 |
MURAKAMI M, TAKAKOSHI T, MAEDA M, et al. PIV measurement result of superfluid He II thermal counterflow jet [J]. AIP Conference Proceedings , 2008, 985: 183–190.
|
44 |
BEWLEY G P, PAOLERRI M S, SREENIVASAN K R, et al Characterization of reconnecting vortices in superfluid helium[J]. Proceedings of the National Academy of Sciences, 2008, 105 (37): 13707- 13710
doi: 10.1073/pnas.0806002105
|
45 |
BEWLEY G P, SREENIVASAN K R, LATHROP D P Particles for tracing turbulent liquid helium[J]. Experiments in Fluids, 2008, 44: 887- 896
doi: 10.1007/s00348-007-0444-6
|
46 |
BEWLEY G P, SREENIVASAN K R The decay of a quantized vortex ring and the influence of tracer particles[J]. Journal of Low Temperature Physics, 2009, 156: 84- 94
doi: 10.1007/s10909-009-9903-1
|
47 |
GESSNER O, VILESOV A F Imaging quantum vortices in superfluid helium droplets[J]. Annual Review of Physical Chemistry, 2019, 70: 173- 198
doi: 10.1146/annurev-physchem-042018-052744
|
48 |
PERETTI C, VESSAIRE J, DUROZOY É, et al Direct visualization of the quantum vortex lattice structure, oscillations, and destabilization in rotating 4He[J]. Science Advances, 2023, 9: eadh2899
doi: 10.1126/sciadv.adh2899
|
49 |
ANCILOTTO F, PI M, BARRANCO M Vortex arrays in nanoscopic superfluid helium droplets[J]. Physical Review B, 2015, 91: 100503
doi: 10.1103/PhysRevB.91.100503
|
50 |
CELIK D, VAN SCIVER S W Tracer particle generation in superfluid helium through cryogenic liquid injection for particle image velocimetry (PIV) applications[J]. Experimental Thermal and Fluid Science, 2002, 26 (8): 971- 975
doi: 10.1016/S0894-1777(02)00204-2
|
51 |
FONDA E, SREENIVASAN K R, LATHROP D P Sub-micron solid air tracers for quantum vortices and liquid helium flows[J]. Review of Scientific Instruments, 2016, 87: 025106
doi: 10.1063/1.4941337
|
52 |
MASTRACCI B, GUO W Exploration of thermal counterflow in He II using particle tracking velocimetry[J]. Physical Review Fluids, 2018, 3 (6): 063304
doi: 10.1103/PhysRevFluids.3.063304
|
53 |
BARENGHI C F, KIVOTIDES D, SERGEEV Y A Close approach of a spherical particle and a quantised vortex in helium II[J]. Journal of Low Temperature Physics, 2007, 148: 293- 297
doi: 10.1007/s10909-007-9387-9
|
54 |
FUJIYAMA S, HÄNNINEN R, TSUBOTA M Vortex pinning to a solid sphere in helium II[J]. Journal of Low Temperature Physics, 2007, 148: 263- 267
doi: 10.1007/s10909-007-9385-y
|
55 |
SERGEEV Y A, BARENGHI C F, KIVOTIDES D Motion of micron-size particles in turbulent helium II[J]. Physical Review B, 2006, 74: 184506
doi: 10.1103/PhysRevB.74.184506
|
56 |
RELLERGERT W G, CAHN S B, GARVAN A, et al Detection and imaging of ${\mathrm{He}}_2^* $ molecules in superfluid helium[J]. Physical Review Letters, 2008, 100 (2): 025301
doi: 10.1103/PhysRevLett.100.025301
|
57 |
GUO W, CAHN S B, NIKKEL J A, et al Visualization study of counterflow in superfluid 4He using metastable helium molecules[J]. Physical Review Letters, 2010, 105 (4): 045301
doi: 10.1103/PhysRevLett.105.045301
|
58 |
GUO W, WRIGHT J D, CAHN S B, et al Metastable helium molecules as tracers in superfluid 4He[J]. Physical Review Letters, 2009, 102: 235301
doi: 10.1103/PhysRevLett.102.235301
|
59 |
SHILTAGH N M, MENDOZA LUNA L G, WATKINS M J, et al Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure[J]. The European Physical Journal D, 2018, 72: 5
doi: 10.1140/epjd/e2017-80625-4
|
60 |
MARAKOV A, GAO J, GUO W, et al Visualization of the normal-fluid turbulence in counterflowing superfluid 4He[J]. Physical Review B, 2015, 91: 094503
doi: 10.1103/PhysRevB.91.094503
|
61 |
GAO J, GUO W, VINEN W F Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid 4He[J]. Physical Review B, 2016, 94: 094502
doi: 10.1103/PhysRevB.94.094502
|
62 |
GAO J, VARGA E, GUO W, et al Energy spectrum of thermal counterflow turbulence in superfluid helium-4[J]. Physical Review B, 2017, 96: 094511
doi: 10.1103/PhysRevB.96.094511
|
63 |
GUO W Molecular tagging velocimetry in superfluid helium-4: Progress, issues, and future development[J]. Journal of Low Temperature Physics, 2019, 196: 60- 72
doi: 10.1007/s10909-018-2102-1
|
64 |
WEN X, BAO S R, MCDONALD L, et al Imaging fluorescence of ${\mathrm{He}}_2^* $ excimers created by neutron capture in liquid helium II[J]. Physical Review Letters, 2020, 124: 134502
doi: 10.1103/PhysRevLett.124.134502
|
65 |
WEN X, MCDONALD L, PIERCE J, et al Observing flow of He II with unsupervised machine learning[J]. Scientific Reports, 2022, 12: 20383
doi: 10.1038/s41598-022-21906-w
|
66 |
WEN X, PIERCE J, LAVRIK N, et al Flow of the normal component of He-II about bluff objects observed with ${\mathrm{He}}_2^* $ excimers[J]. Physical Review B, 2023, 107: 174501
doi: 10.1103/PhysRevB.107.174501
|
67 |
SONNENSCHEIN V, TSUJI Y, KOKURYU S, et al An experimental setup for creating and imaging ${}^4{\mathrm{He}}_2^* $ excimer cluster tracers in superfluid helium-4 via neutron-3He absorption reaction[J]. Review of Scientific Instruments, 2020, 91 (3): 033318
doi: 10.1063/1.5130919
|
68 |
MATSUSHITA T, SONNENSCHEIN V, GUO W, et al Generation of ${}^4{\mathrm{He}}_2^* $ clusters via neutron-3He absorption reaction toward visualization of full velocity field in quantum turbulence[J]. Journal of Low Temperature Physics, 2019, 196: 275- 282
doi: 10.1007/s10909-018-02112-3
|
69 |
VAN SCIVER S W, BARENGHI C F. Visualization of quantum turbulence [M]// DE BOER J, BRINKMAN H, CASIMI H B G. Progress in low temperature physics . New York: Elsevier, 2009: 247–303.
|
70 |
MCKINSEY D, LIPPINCOTT W, NIKKEL J, et al Trace detection of metastable helium molecules in superfluid helium by laser-induced fluorescence[J]. Physical Review Letters, 2005, 95: 111101
doi: 10.1103/PhysRevLett.95.111101
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|