Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 853-862    DOI: 10.3785/j.issn.1008-973X.2025.04.021
机械与能源工程     
超流氦流场可视化技术研究进展
胡应璇1(),李国良1,黄雯琳1,张俊佩2,童欣2,邱利民1,包士然1,*()
1. 浙江大学 制冷与低温研究所,浙江 杭州 310027
2. 中国科学院高能物理研究所,北京 100049
Progress in flow visualization techniques in superfluid helium
Yingxuan HU1(),Guoliang LI1,Wenlin HUANG1,Junpei ZHANG2,Xin TONG2,Limin QIU1,Shiran BAO1,*()
1. Institute of Refrigeration and Cryogenics , Zhejiang University, Hangzhou 310027, China
2. Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
 全文: PDF(3259 KB)   HTML
摘要:

流场可视化是非接触式、全局高精度的新兴测量技术,测得的精细超流氦流场与传热信息能够为超导大科学装置的冷却系统设计提供数据和关联式支撑. 超流氦具有量子特性,示踪物与量子涡旋的相互作用程度显著影响流场可视化测量的准确性. 基于不同示踪物,深入讨论电子气泡法、微粒示踪法和分子示踪法3种主要的流场可视化方法涉及的关键技术,包括依据实验目的选择示踪物、搭建合适的光路和进行数据后处理.

关键词: 超流氦流场可视化技术超导冷却低温测量量子涡旋示踪技术    
Abstract:

Flow visualization is a novel measurement technique that is non-intrusive and highly precise. The application of the technique provides detailed insights into the flow and heat transfer of superfluid helium, thereby supporting the design of cooling systems in large superconducting installations. The interactions between tracers and quantum vortices significantly affect the measurement accuracy of flow visualization. The flow fields have been visualized using three primary methods based on tracer selection: electron bubble, particle tracing, and molecular tracing methods. Key technologies involved in these methods were studied, including the selection of tracers according to experimental goals, the establishment of suitable optical paths, and data post-processing.

Key words: superfluid helium    flow visualization techniques    superconducting cooling    cryogenic measurement    quantum vortex    tracer technique
收稿日期: 2024-01-17 出版日期: 2025-04-25
CLC:  O 512.1  
基金资助: 国家自然科学基金资助项目(52206028).
通讯作者: 包士然     E-mail: huyingxuan@zju.edu.cn;srbao@zju.edu.cn
作者简介: 胡应璇(2000—),男,硕士生,从事超流氦流场可视化研究. orcid.org/0009-0000-9778-008X. E-mail:huyingxuan@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡应璇
李国良
黄雯琳
张俊佩
童欣
邱利民
包士然

引用本文:

胡应璇,李国良,黄雯琳,张俊佩,童欣,邱利民,包士然. 超流氦流场可视化技术研究进展[J]. 浙江大学学报(工学版), 2025, 59(4): 853-862.

Yingxuan HU,Guoliang LI,Wenlin HUANG,Junpei ZHANG,Xin TONG,Limin QIU,Shiran BAO. Progress in flow visualization techniques in superfluid helium. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 853-862.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.021        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/853

图 1  超流氦中2种组分的摩尔分数与温度的关系
方法示踪物原理优点缺点
电子气泡电子气泡电子进入超流氦,发生局部空化产生电子气泡,通过拍摄气泡运动来分析流场方法简单,成本低精度较低,气泡生成难以控制
微粒示踪固态颗粒:如空心玻璃微珠.
凝固颗粒:如固氢颗粒
将示踪微粒掺入超流氦,通过示踪微粒跟随流场的运动来反映流场技术较为成熟,示踪颗粒种类多样,精度较高、结果较为准确微粒粒径与密度普遍偏大,容易被超流氦中的量子涡旋束缚
分子示踪$ {{\mathrm{He}}}_{2}^{\mathrm{*}} $准分子He分子电离后会产生$ {{\mathrm{He}}}_{2}^{\mathrm{*}} $准分子,该分子在特定波长的激光下会产生荧光,可用于流场的可视化拍摄不易被流场中的涡旋束缚,跟随性好;分子级别的示踪物、粒径较小,所受浮力小,对流场的干扰小He原子电离较为困难结构复杂,成本较高,技术仍不成熟
表 1  超流氦流场可视化的主要方法及特点
图 2  不同旋转速度下超流氦中离散量子涡旋线的图像[19]
图 3  超流氦的圆柱绕流数值仿真[36]
介质Tsd/Kρs/(kg·m?3)
固氮63.001 025
固氖24.561 207
固氕13.9586
固氘18.73206
表 2  超流氦中常用的凝固介质
图 4  超流氦中量子涡旋重连的可视化图像[44]
图 5  凝固空气作为示踪粒子观测到的液氦和超流氦流场[51]
图 6  内部对流过程中常/超组分速度场的分布[52]
图 7  基于尖端电离的超流氦流场可视化技术[57]
图 8  基于激光电离的超流氦流场可视化技术[60]
图 9  基于中子电离的超流氦流场可视化技术[64-66]
示踪粒子dp/μmρp/ (kg·m?3)Stk
电子气泡$ \geqslant 10.0 $
空心玻璃微珠≈30.0, 120.016011.90 (以dp=120.0 μm计算)
空心玻璃微珠≈8.0, 12.01 1005.97 (以dp=12.0 μm计算)
聚合物颗粒≈1.71 1000.84 (以dp=1.7 μm计算)
氕/氘混合颗粒>1.01400.09 (以dp=1.0 μm计算)
固氘颗粒>1.02060.11 (以dp=1.0 μm计算)
固氖颗粒>1.01 1500.51 (以dp=1.0 μm计算)
分子云团$ R\approx 6.0\times {10}^{-4} $ μm104/cm3(单位体积内的分子数)
表 3  常用超流氦流场示踪物及其特性[63,69]
1 王贻芳 建设国际领先的大科学装置奠定科技强国的基础[J]. 中国科学院院刊, 2017, 32 (5): 483- 487
WANG Yifang Build world-leading large scientific facilities, lay foudation for a powerful country in science[J]. Bulletin of Chinese Academy of Sciences, 2017, 32 (5): 483- 487
2 PADAMSEE H The science and technology of superconducting cavities for accelerators[J]. Superconductor Science and Technology, 2001, 14 (4): R28
doi: 10.1088/0953-2048/14/4/202
3 张鹏, 王如竹. 超流氦传热[M]. 北京: 科学出版社, 2009.
4 孙良瑞, 葛锐, 李少鹏, 等 先进光源技术研发与测试平台(PAPS)2 K超流氦低温系统流程设计与计算[J]. 低温工程, 2021, (3): 58- 63
SUN Liangrui, GE Rui, LI Shaopeng, et al Design and calculation of helium cryogenic system of platform of advanced photon source (PAPS)[J]. Cryogenics, 2021, (3): 58- 63
doi: 10.3969/j.issn.1000-6516.2021.03.011
5 DALESANDRO A, KALUZNY J, KLEBANER A Thermodynamic analyses of the LCLS-II cryogenic distribution system[J]. IEEE Transactions on Applied Superconductivity, 2016, 27 (4):
6 XU T, CASAGRANDE F, GANNI V, et al. Status of cryogenic system for spallation neutron source’s superconducting radiofrequency test facility at Oak Ridge National Lab [C]// AIP Conference Proceedings . Spokane: AIP, 2012: 1085–1091.
7 YOSHIDA J, HOSOYAMA K, NAKAI H, et al. Development of STF cryogenic system in KEK [C]// 2007 IEEE Particle Accelerator Conference . Albuquerque: IEEE, 2007: 2701–2703.
8 RODE C H, TEAM J G P. Jefferson lab 12 GeV CEBAF upgrade [C]// AIP Conference Proceedings . Tucson: AIP, 2010: 26–33.
9 ZHANG P, MURAKAMI M Three dimensionality of pulsed second-sound waves in He II[J]. Physical Review B, 2006, 74 (2): 024528
doi: 10.1103/PhysRevB.74.024528
10 张鹏, 王如竹, 村上正秀 超流氦浴中的热波传热研究[J]. 物理学报, 2002, 51 (6): 1350- 1354
ZHANG Peng, WANG Ruzhu, MURAKAMI Masahide Thermal wave heat transfer in the bath of superfluid helium[J]. Acta Physica Sinica, 2002, 51 (6): 1350- 1354
11 LANE C T, FAIRBANK H A, FAIRBANK W M Second sound in liquid helium II[J]. Physical Review, 1947, 71 (9): 600- 605
doi: 10.1103/PhysRev.71.600
12 PITAEVSKII L P Vortex lines in an imperfect Bose gas[J]. Soviet Physics, JETP, 1961, 13 (2): 451- 454
13 LONDON F The λ-phenomenon of liquid helium and the Bose-Einstein degeneracy[J]. Nature, 1938, 141: 643- 644
doi: 10.1038/141643a0
14 VAN SCIVER S W, TIMMERHAUS K, CLARK A F. Helium cryogenics [M]. New York: Springer, 2012.
15 ADRIAN R J, WESTERWEEL J. Particle image velocimetry [M]. Cambridge: Cambridge University Press, 2011.
16 范洁川. 近代流动显示技术[M]. 北京: 国防工业出版社, 2002.
17 ADAMCZYK A A, RIMAI L 2-Dimensional particle tracking velocimetry (PTV): technique and image processing algorithms[J]. Experiments in Fluids, 1988, 6: 373- 380
doi: 10.1007/BF00196482
18 BEWLEY G P, LATHROP D P, SREENIVASAN K R Visualization of quantized vortices[J]. Nature, 2006, 441: 588
doi: 10.1038/441588a
19 WILLIAMS G A, PACKARD R E Photographs of quantized vortex lines in rotating He II[J]. Physical Review Letters, 1974, 33: 280
doi: 10.1103/PhysRevLett.33.280
20 TANG Y, GUO W, KOBAYASHI H, et al Imaging quantized vortex rings in superfluid helium to evaluate quantum dissipation[J]. Nature Communications, 2023, 14: 2941
doi: 10.1038/s41467-023-38787-w
21 KAPITZA P Viscosity of liquid helium below the λ-point[J]. Nature, 1938, 141: 74
doi: 10.1038/141074a0
22 ARP V Heat transport through helium II[J]. Cryogenics, 1970, 10 (2): 96- 105
doi: 10.1016/0011-2275(70)90078-0
23 LANDAU L. The theory of superfluidity of helium II [M]// KHALATNIKOV I M. An introduction to the theory of superfluidity . Boca Raton: CRC Press, 2018: 185–204.
24 TISZA L The theory of liquid helium[J]. Physical Review, 1947, 72: 838
doi: 10.1103/PhysRev.72.838
25 MARIS H J, XIONG Q Nucleation of bubbles in liquid helium at negative pressure[J]. Physical Review Letters, 1989, 63: 1078
doi: 10.1103/PhysRevLett.63.1078
26 CLASSEN J, SU C K, MARIS H J Observation of exploding electron bubbles in liquid helium[J]. Physical Review Letters, 1996, 77: 2006
doi: 10.1103/PhysRevLett.77.2006
27 GHOSH A, MARIS H J Measurement of the lifetime of excited-state electron bubbles in superfluid helium[J]. Physical Review B, 2005, 72: 054512
doi: 10.1103/PhysRevB.72.054512
28 KONSTANTINOV D, MARIS H J Detection of excited-state electron bubbles in superfluid helium[J]. Physical Review Letters, 2003, 90: 025302
doi: 10.1103/PhysRevLett.90.025302
29 GUO W, JIN D, SEIDEL G M, et al Experiments with single electrons in liquid helium[J]. Physical Review B, 2009, 79: 054515
doi: 10.1103/PhysRevB.79.054515
30 JIN D, MARIS H J A study of the motion of particles in superfluid helium-4 and interactions with vortices[J]. Journal of Low Temperature Physics, 2011, 162: 329- 339
doi: 10.1007/s10909-010-0237-9
31 MURAKAMI M, ICHIKAWA N Flow visualization study of thermal counterflow jet in He II[J]. Cryogenics, 1989, 29 (4): 438- 443
doi: 10.1016/0011-2275(89)90276-2
32 VAN SCIVER S W, FUZIER S, XU T Particle image velocimetry studies of counterflow heat transport in superfluid helium II[J]. Journal of Low Temperature Physics, 2007, 148: 225- 233
doi: 10.1007/s10909-007-9375-0
33 ZHANG T, VAN SCIVER S W The motion of micron-sized particles in He II counterflow as observed by the PIV technique[J]. Journal of Low Temperature Physics, 2005, 138: 865- 870
doi: 10.1007/s10909-005-2316-x
34 ZHANG T, VAN SCIVER S W Large-scale turbulent flow around a cylinder in counterflow superfluid 4He (He (II))[J]. Nature Physics, 2005, 1: 36- 38
doi: 10.1038/nphys114
35 金滔, FUZIER Sylvie, VAN SCIVER Steven 超流氦中喷射流流场的PIV可视化观察[J]. 浙江大学学报: 工学版, 2010, 44 (3): 473- 475
JIN Tao, FUZIER Sylvie, VAN SCIVER Steven Observation of jet flow into superfluid helium using particle image velocimetry technique[J]. Journal of Zhejiang University: Engineering Science, 2010, 44 (3): 473- 475
36 SOULAINE C, QUINTARD M, BAUDOUY B, et al Numerical investigation of thermal counterflow of He II past cylinders[J]. Physical Review Letters, 2017, 118: 074506
doi: 10.1103/PhysRevLett.118.074506
37 SOULAINE C, QUINTARD M, ALLAIN H, et al A PISO-like algorithm to simulate superfluid helium flow with the two-fluid model[J]. Computer Physics Communications, 2015, 187: 20- 28
doi: 10.1016/j.cpc.2014.10.006
38 MOROSHKIN P, KONO K Imaging and time-resolved study of laser-induced fluorescence of dysprosium atoms injected into superfluid helium[J]. Physical Review B, 2020, 101: 134520
doi: 10.1103/PhysRevB.101.134520
39 MINOWA Y, AOYAGI S, INUI S, et al Visualization of quantized vortex reconnection enabled by laser ablation[J]. Science Advances, 2022, 8 (18): eabn1143
doi: 10.1126/sciadv.abn1143
40 CHOPRA K L, BROWN J B Suspension of particles in liquid helium[J]. Physical Review, 1957, 108: 157
41 MURAKAMI M, TAKAKOSHI T, MAEDA M, et al Application of particle image velocimetry for measuring He II thermal counterflow jets[J]. Cryogenics, 2009, 49 (10): 543- 548
doi: 10.1016/j.cryogenics.2008.10.020
42 NAKANO A, MURAKAMI M Velocity measurement of He II thermal counterflow jet accompanied by second sound Helmholtz oscillation[J]. Cryogenics, 1994, 34 (3): 179- 185
doi: 10.1016/0011-2275(94)90167-8
43 MURAKAMI M, TAKAKOSHI T, MAEDA M, et al. PIV measurement result of superfluid He II thermal counterflow jet [J]. AIP Conference Proceedings , 2008, 985: 183–190.
44 BEWLEY G P, PAOLERRI M S, SREENIVASAN K R, et al Characterization of reconnecting vortices in superfluid helium[J]. Proceedings of the National Academy of Sciences, 2008, 105 (37): 13707- 13710
doi: 10.1073/pnas.0806002105
45 BEWLEY G P, SREENIVASAN K R, LATHROP D P Particles for tracing turbulent liquid helium[J]. Experiments in Fluids, 2008, 44: 887- 896
doi: 10.1007/s00348-007-0444-6
46 BEWLEY G P, SREENIVASAN K R The decay of a quantized vortex ring and the influence of tracer particles[J]. Journal of Low Temperature Physics, 2009, 156: 84- 94
doi: 10.1007/s10909-009-9903-1
47 GESSNER O, VILESOV A F Imaging quantum vortices in superfluid helium droplets[J]. Annual Review of Physical Chemistry, 2019, 70: 173- 198
doi: 10.1146/annurev-physchem-042018-052744
48 PERETTI C, VESSAIRE J, DUROZOY É, et al Direct visualization of the quantum vortex lattice structure, oscillations, and destabilization in rotating 4He[J]. Science Advances, 2023, 9: eadh2899
doi: 10.1126/sciadv.adh2899
49 ANCILOTTO F, PI M, BARRANCO M Vortex arrays in nanoscopic superfluid helium droplets[J]. Physical Review B, 2015, 91: 100503
doi: 10.1103/PhysRevB.91.100503
50 CELIK D, VAN SCIVER S W Tracer particle generation in superfluid helium through cryogenic liquid injection for particle image velocimetry (PIV) applications[J]. Experimental Thermal and Fluid Science, 2002, 26 (8): 971- 975
doi: 10.1016/S0894-1777(02)00204-2
51 FONDA E, SREENIVASAN K R, LATHROP D P Sub-micron solid air tracers for quantum vortices and liquid helium flows[J]. Review of Scientific Instruments, 2016, 87: 025106
doi: 10.1063/1.4941337
52 MASTRACCI B, GUO W Exploration of thermal counterflow in He II using particle tracking velocimetry[J]. Physical Review Fluids, 2018, 3 (6): 063304
doi: 10.1103/PhysRevFluids.3.063304
53 BARENGHI C F, KIVOTIDES D, SERGEEV Y A Close approach of a spherical particle and a quantised vortex in helium II[J]. Journal of Low Temperature Physics, 2007, 148: 293- 297
doi: 10.1007/s10909-007-9387-9
54 FUJIYAMA S, HÄNNINEN R, TSUBOTA M Vortex pinning to a solid sphere in helium II[J]. Journal of Low Temperature Physics, 2007, 148: 263- 267
doi: 10.1007/s10909-007-9385-y
55 SERGEEV Y A, BARENGHI C F, KIVOTIDES D Motion of micron-size particles in turbulent helium II[J]. Physical Review B, 2006, 74: 184506
doi: 10.1103/PhysRevB.74.184506
56 RELLERGERT W G, CAHN S B, GARVAN A, et al Detection and imaging of ${\mathrm{He}}_2^* $ molecules in superfluid helium[J]. Physical Review Letters, 2008, 100 (2): 025301
doi: 10.1103/PhysRevLett.100.025301
57 GUO W, CAHN S B, NIKKEL J A, et al Visualization study of counterflow in superfluid 4He using metastable helium molecules[J]. Physical Review Letters, 2010, 105 (4): 045301
doi: 10.1103/PhysRevLett.105.045301
58 GUO W, WRIGHT J D, CAHN S B, et al Metastable helium molecules as tracers in superfluid 4He[J]. Physical Review Letters, 2009, 102: 235301
doi: 10.1103/PhysRevLett.102.235301
59 SHILTAGH N M, MENDOZA LUNA L G, WATKINS M J, et al Atomic fluorescence emitted from a corona discharge in helium above and below saturated vapour pressure[J]. The European Physical Journal D, 2018, 72: 5
doi: 10.1140/epjd/e2017-80625-4
60 MARAKOV A, GAO J, GUO W, et al Visualization of the normal-fluid turbulence in counterflowing superfluid 4He[J]. Physical Review B, 2015, 91: 094503
doi: 10.1103/PhysRevB.91.094503
61 GAO J, GUO W, VINEN W F Determination of the effective kinematic viscosity for the decay of quasiclassical turbulence in superfluid 4He[J]. Physical Review B, 2016, 94: 094502
doi: 10.1103/PhysRevB.94.094502
62 GAO J, VARGA E, GUO W, et al Energy spectrum of thermal counterflow turbulence in superfluid helium-4[J]. Physical Review B, 2017, 96: 094511
doi: 10.1103/PhysRevB.96.094511
63 GUO W Molecular tagging velocimetry in superfluid helium-4: Progress, issues, and future development[J]. Journal of Low Temperature Physics, 2019, 196: 60- 72
doi: 10.1007/s10909-018-2102-1
64 WEN X, BAO S R, MCDONALD L, et al Imaging fluorescence of ${\mathrm{He}}_2^* $ excimers created by neutron capture in liquid helium II[J]. Physical Review Letters, 2020, 124: 134502
doi: 10.1103/PhysRevLett.124.134502
65 WEN X, MCDONALD L, PIERCE J, et al Observing flow of He II with unsupervised machine learning[J]. Scientific Reports, 2022, 12: 20383
doi: 10.1038/s41598-022-21906-w
66 WEN X, PIERCE J, LAVRIK N, et al Flow of the normal component of He-II about bluff objects observed with ${\mathrm{He}}_2^* $ excimers[J]. Physical Review B, 2023, 107: 174501
doi: 10.1103/PhysRevB.107.174501
67 SONNENSCHEIN V, TSUJI Y, KOKURYU S, et al An experimental setup for creating and imaging ${}^4{\mathrm{He}}_2^* $ excimer cluster tracers in superfluid helium-4 via neutron-3He absorption reaction[J]. Review of Scientific Instruments, 2020, 91 (3): 033318
doi: 10.1063/1.5130919
68 MATSUSHITA T, SONNENSCHEIN V, GUO W, et al Generation of ${}^4{\mathrm{He}}_2^* $ clusters via neutron-3He absorption reaction toward visualization of full velocity field in quantum turbulence[J]. Journal of Low Temperature Physics, 2019, 196: 275- 282
doi: 10.1007/s10909-018-02112-3
69 VAN SCIVER S W, BARENGHI C F. Visualization of quantum turbulence [M]// DE BOER J, BRINKMAN H, CASIMI H B G. Progress in low temperature physics . New York: Elsevier, 2009: 247–303.
70 MCKINSEY D, LIPPINCOTT W, NIKKEL J, et al Trace detection of metastable helium molecules in superfluid helium by laser-induced fluorescence[J]. Physical Review Letters, 2005, 95: 111101
doi: 10.1103/PhysRevLett.95.111101
[1] 李亦健, 吴舒琴, 金滔. 低温浆体电容式液位计的优化及实验[J]. 浙江大学学报(工学版), 2018, 52(5): 966-970.
[2] 金滔, FUZIER Sylvie, VAN SCIVER Steven. 超流氦中喷射流流场的PIV可视化观察[J]. J4, 2010, 44(3): 473-475.