Please wait a minute...
浙江大学学报(工学版)  2025, Vol. 59 Issue (4): 842-852    DOI: 10.3785/j.issn.1008-973X.2025.04.020
机械与能源工程     
基于振动响应重构的电主轴径向回转误差测量
阮佳豪1,2(),康为民1,2,傅建中1,2,*()
1. 浙江大学 机械工程学院,浙江 杭州 310027
2. 浙江省三维打印工艺与装备重点实验室,浙江 杭州 310027
Measurement of radial rotation error of electric spindle based on vibration response reconstruction
Jiahao RUAN1,2(),Weimin KANG1,2,Jianzhong FU1,2,*()
1. School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Key Laboratory of 3D Printing Process and Equipment of Zhejiang Province, Hangzhou 310027, China
 全文: PDF(2756 KB)   HTML
摘要:

现有测量电主轴径向回转误差的方法适用于低转速,无法实现加工过程的在线测量. 开展机床电主轴振动响应与径向回转误差的内在机理研究,揭示电主轴振动重构在线测量径向回转误差机制,提出电主轴在高速转动下通过振动信号获取在线测量径向回转误差的新方法. 应用模态扩展方程,基于电主轴机壳上采集的振动信号,重构芯轴的振动响应. 在重构过程中,利用有限元仿真实现电主轴模态振型初步提取,采用模态振型实验校正电主轴模态振型,建立芯轴振动响应与电主轴径向回转误差的数学模型,实现电主轴径向回转误差的求解. 对比实验结果表明,相比主轴径向误差测量的三点法,所提方法在主轴转速低于10 000 r/min时,误差不超过6.49%. 所提方法为实现数控机床加工过程中电主轴径向回转误差在线测量提供了技术路径.

关键词: 数控机床电主轴径向回转误差振动响应重构模态扩展    
Abstract:

Existing methods of measuring radial rotation error of the electric spindle apply to low rotational speeds and fail to realize the online measurement of the machining process. The intrinsic mechanism of the vibration response and radial rotation error of a machine tool electric spindle was studied, the mechanism of online measurement of radial rotation error by vibration reconstruction of the electric spindle was revealed, and a new method of online measurement of radial rotation error by vibration signal was proposed for the electric spindle under high-speed rotation. The vibration response of the mandrel was reconstructed from the vibration signals collected from the electric spindle housing by modal expansion equation. During the reconstruction process, the initial extraction of the modal vibration pattern of the spindle was realized by finite element simulation, the modal vibration pattern was corrected by modal vibration experiment, and a mathematical model of the vibration response of the mandrel and radial rotation error of the spindle was established to realize the solution of the radial rotation error of the spindle. Comparison tests were conducted with the three-point method of spindle radial error measurement. Results showed that the error of the proposed method was within 6.49% at electric spindle speeds below 10 000 r/min. The proposed method provides a technical path for realizing the online measurement of the radial rotation error of the electric spindle during the machining process of CNC machine tools.

Key words: CNC machine tool    electric spindle    radial rotation error    vibration response reconstruction    modal extension
收稿日期: 2024-01-31 出版日期: 2025-04-25
CLC:  TH 113.1  
基金资助: 浙江省自然科学基金资助项目(DT23E0501,DT23E050005);国家自然科学基金资助项目(52175440);浙江省科技计划项目(2023C01059).
通讯作者: 傅建中     E-mail: 22125091@zju.edu.cn;fjz@zju.edu.cn
作者简介: 阮佳豪(1998—),男,硕士生,从事高精度数控机床精度测量研究. orcid.org/0009-0003-9681-8148. E-mail:22125091@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
阮佳豪
康为民
傅建中

引用本文:

阮佳豪,康为民,傅建中. 基于振动响应重构的电主轴径向回转误差测量[J]. 浙江大学学报(工学版), 2025, 59(4): 842-852.

Jiahao RUAN,Weimin KANG,Jianzhong FU. Measurement of radial rotation error of electric spindle based on vibration response reconstruction. Journal of ZheJiang University (Engineering Science), 2025, 59(4): 842-852.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2025.04.020        https://www.zjujournals.com/eng/CN/Y2025/V59/I4/842

结构材料ρ/(kg·m?3)E/GPaμ
芯轴45#78502100.31
基座铸铝2700700.30
轴承内圈轴承钢78002080.30
轴承外圈轴承钢78002080.30
表 1  电主轴关键部件材料力学特性参数
图 1  电主轴前2阶模态振型图
图 2  激振实验装置
图 3  加速度导纳频率响应图
模态阶数f/Hz
ε/%
修正前修正后实验结果
1270.53275.92282.550.93
2445.54452.21460.271.98
3538.54554.38564.331.76
4820.58826.15832.460.76
5924.59947.24950.780.37
61 042.611 048.751 050.590.18
表 2  电主轴有限元模型修正前后各阶固有频率
图 4  电主轴传感器测点布置图
图 5  不同电主轴振动方向的费舍尔信息矩阵的2-范数变化率随模态分析阶数的变化
图 6  转速对模态振型影响的合理性示意图
图 7  芯轴重构点尺寸分布
图 8  轴线拟合原理图
图 9  电主轴芯轴前6阶振型
图 10  回转误差计算方法
图 11  模态振型修正实验台
图 12  力锤敲击位置
图 13  重构响应和实测响应比较
图 14  不同重构点振动响应重构误差对比(模态振型修正前)
图 15  电主轴机壳模态振型修正算法的流程图
图 16  不同重构点振动响应重构误差对比(模态振型修正后)
图 17  电主轴芯轴模态振型修正实验方案
图 18  电主轴芯轴模态振型图
图 19  振动响应重构法重复测量部分极坐标图
序号${{\varepsilon}}_{\text{rr}} $/μm序号${{\varepsilon}}_{\text{rr}} $/μm序号${{\varepsilon}}_{\text{rr}} $/μm
11.3081.11151.39
21.2991.35161.26
31.28101.31171.29
41.20111.35181.38
51.23121.22191.28
61.15131.21201.12
71.26141.36211.32
表 3  被测电主轴振动场重构法径向回转误差测量值
图 20  电主轴不同转速下振动响应重构法测量结果分布图
vs/(103 r·min?1)$\varepsilon_{\mathrm{rr}} $/μmR/μm$\sigma $/μm
10.820.140.056
21.060.160.048
31.960.290.059
41.480.250.085
51.380.190.063
61.060.180.076
71.190.220.082
81.230.270.103
91.220.300.099
101.270.280.080
表 4  电主轴振动响应重构法径向回转误差测量结果
图 21  高转速三点法实验台
图 22  电主轴不同转速下三点法测量结果分布图
vs/(103 r·min?1)Ea/μm$\varepsilon _{\mathrm{r}} $/%
10.056.49
20.054.95
30.083.92
40.064.23
50.032.13
60.066.00
70.051.71
800
90.021.67
100.021.55
表 5  不同转速下被测电主轴振动响应重构法测量误差结果
1 蔡鹤皋 关于主轴回转运动精度及其动态测量方法的分析[J]. 哈尔滨工业大学学报, 1978, (2): 56- 70
CAI Hegao Analysis of rotary motion accuracy of spindle and its dynamic measurement method[J]. Journal of Harbin Institute of Technology, 1978, (2): 56- 70
2 TLUSTY J Dynamics of high-speed milling[J]. Journal of Engineering for Industry, 1986, 108 (2): 59- 67
doi: 10.1115/1.3187052
3 DONALDSON R R A simple method for separating spindle error from test ball roundness error[J]. CIRP Annals Manufacturing Technology, 1972, 21 (1): 125- 126
4 叶京生, 顾启泰, 章燕申. 论多步法误差分离技术的测量精度. 计量学报. 1990, 11(2): 119–123.
YE Jingsheng, GU Qitai, ZHANG Yanshen. Measuring accuracy of errors separation technique by using multistep method [J]. Acta Metrologica Sinica , 1990, 11(2): 119–123.
5 GREJDA R, MARSH E, VALLANCE R Techniques for calibrating spindles with nanometer error motion[J]. Precision Engineering, 2005, 29 (1): 113- 123
doi: 10.1016/j.precisioneng.2004.05.003
6 蓝河, 雷大江, 钱林弘, 等 基于光谱共焦位移传感器的非接触式回转误差测量系统[J]. 制造技术与机床, 2017, (3): 141- 145
LAN He, LEI Dajiang, QIAN Linhong, et al A non contact system for measurement of rotating error based on confocal chromatic displacement sensor[J]. Manufacturing Technology and Machine Tool, 2017, (3): 141- 145
7 DENIS S A, SAMUEL G L Harmonic-analysis-based method for separation of form error during evaluation of high-speed spindle radial errors[J]. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, 2012, 226 (5): 837- 852
doi: 10.1177/0954405411434868
8 马平, 李健洪, 欧建国, 等 主轴回转精度多步误差分离研究[J]. 机械科学与技术, 2018, 37 (6): 884- 890
MA Ping, LI Jianhong, OU Jianguo, et al Study on multi-step error separation of spindle rotation precision[J]. Mechanical Science and Technology for Aerospace Engineering, 2018, 37 (6): 884- 890
9 邱海龙. 基于三点法的精密主轴径向回转误差分离技术研究[D]. 西安: 西安电子科技大学, 2015: 1–68.
QIU Hailong. A research for precision spindle radial rotation error separation technology based on the three-point method [D]. Xi’an: Xidian University, 2015: 1–68.
10 LEE D H, LEE W R Easy measuring instrument for analyzing the radial and tilt error motions of a rotating shaft[J]. Proceedings of the Institution of Mechanical Engineers, Part M: Journal of Engineering for the Maritime Environment, 2017, 231 (2): 667- 674
doi: 10.1177/1475090216680891
11 张根明. 超精密气体静压主轴回转误差测量与分析[D]. 广州: 广东工业大学, 2018: 1–81.
ZHANG Genming. Measurement and analysis of rotation error of the ultra-precision aerostatic spindle [D]. Guangzhou: Guangdong University of Technology, 2018: 1–81.
12 KAVITHA C, ASHOK S D A new approach to spindle radial error evaluation using a machine vision system[J]. Metrology and Measurement Systems, 2017, 24 (1): 201- 219
doi: 10.1515/mms-2017-0018
13 娄志峰, 郝秀朋, 刘力, 等 圆光栅配合自准直仪测量主轴径向运动误差[J]. 光学 精密工程, 2019, 27 (9): 2053
LOU Zhifeng, HAO Xiupeng, LIU Li, et al Spindle radial motion error measurement using a circular grating and a autocollimator[J]. Optics and Precision Engineering, 2019, 27 (9): 2053
doi: 10.3788/OPE.20192709.2053
14 郑烽. 负载条件下机床主轴动态精度测量方法研究[D]. 成都: 电子科技大学, 2018: 1–66.
ZHENG Feng. Study on measuring method of dynamic rotary precision of spindle rotation under load condition [D]. Chengdu: University of Electronic Science and Technology of China, 2018: 1–66.
15 康婷, 曹宏瑞 切削工况下机床主轴回转精度动态预测方法[J]. 机械工程学报, 2020, 56 (17): 240- 248
KANG Ting, CAO Hongrui Dynamic prediction method for machine tool spindle rotational accuracy under cutting condition[J]. Journal of Mechanical Engineering, 2020, 56 (17): 240- 248
16 黄伟迪, 甘春标, 杨世锡 一类高速电主轴的动力学建模及振动响应分析[J]. 浙江大学学报: 工学版, 2016, 50 (11): 2198- 2206
HUANG Weidi, GAN Chunbiao, YANG Shixi Dynamic modeling and vibration response analysis of high speed motorized spindle[J]. Journal of Zhejiang University: Engineering Science, 2016, 50 (11): 2198- 2206
17 应申舜, 林绿高, 计时鸣 基于模态参数验证的机床结构件优化设计[J]. 浙江大学学报: 工学版, 2018, 52 (10): 1880- 1887
YING Shenshun, LIN Lvgao, JI Shiming Optimization design to machine tool structures using experimental verification of modal parameters[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (10): 1880- 1887
18 蒲东. 高速列车轴箱的加速度传感器空间布局研究[D]. 哈尔滨: 哈尔滨理工大学, 2020: 1–67.
PU Dong. Study on acceleration sensor spatial placement of high-speed train’s axle box bearings [D]. Harbin: Harbin University of Science and Technology, 2020: 1–67.
19 黄伟迪, 甘春标, 杨世锡, 等 高速电主轴角接触球轴承刚度及其对电主轴临界转速的影响分析[J]. 振动与冲击, 2017, 36 (10): 19- 25
HUANG Weidi, GAN Chunbiao, YANG Shixi, et al Analysis on the stiffness of angular contact ball bearings and its effect on the critical speed of a high speed motorized spindle[J]. Journal of Vibration and Shock, 2017, 36 (10): 19- 25
20 FARAMARZI A, HEIDARINEJAD M, MIRJALILI S, et al Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems with Applications, 2020, 152: 113377
doi: 10.1016/j.eswa.2020.113377
21 International Organization for Standardization. Test code for machine tools Part 7: geometric accuracy of axes of rotation: ISO 230-7: 2015 [S/OL]. [2025–03–24]. https://www.iso.org/standard/56624.html.
22 李志国, 乔百杰, 朱昱达, 等 基于测点优化与模态扩展的机械结构振动响应全场重构[J]. 振动与冲击, 2023, 42 (9): 123- 134
LI Zhiguo, QIAO Baijie, ZHU Yuda, et al Full field reconstruction of mechanical structure vibration responses based on measurement point optimization and modal expansion[J]. Journal of Vibration and Shock, 2023, 42 (9): 123- 134
[1] 谢杰, 黄筱调, 方成刚, 周宝仓, 陆宁. 磨齿机电主轴热特性及热误差建模[J]. 浙江大学学报(工学版), 2018, 52(2): 247-254.
[2] 李特, 芮执元, 雷春丽, 郭俊锋, 胡赤兵. 考虑气隙变化的高速电主轴热特性仿真[J]. 浙江大学学报(工学版), 2016, 50(5): 941-948.
[3] 刘征宏, 谢庆生, 李少波, 林丽. 基于潜在语义分析和感性工学的用户需求匹配[J]. 浙江大学学报(工学版), 2016, 50(2): 224-233.
[4] 黄伟迪,甘春标,杨世锡. 一类高速电主轴的动力学建模及振动响应分析[J]. 浙江大学学报(工学版), 2016, 50(11): 2195-2206.
[5] 何振亚,傅建中,徐月同. 数控机床旋转轴转角定位误差测量方法[J]. 浙江大学学报(工学版), 2015, 49(5): 835-840.
[6] 邓小雷,傅建中,沈洪垚,陈子辰. 精密数控机床多主轴系统热平衡试验[J]. 浙江大学学报(工学版), 2014, 48(9): 1646-1653.
[7] 邓小雷, 傅建中, 贺永, 陈子辰. 精密数控机床主轴系统多物理场耦合热态特性[J]. J4, 2013, 47(10): 1863-1870.
[8] 姚鑫骅 徐月同 傅建中 陈子辰. 基于粗糙集理论的数控机床智能故障诊断研究[J]. J4, 2008, 42(10): 1719-1724.