电气工程 |
|
|
|
|
双有源桥无回流功率控制的死区影响与补偿 |
张国澎1,2( ),蒋闯闯1,2,陶海军1,陈卓3 |
1. 河南理工大学 电气工程与自动化学院,河南 焦作 454003 2. 河南理工大学 河南省煤矿装备智能检测与控制重点实验室,河南 焦作 454003 3. 可再生能源发电系统研究部,中国科学院电工研究所,北京 100190 |
|
Dead band effect and compensation for return-free power control of dual active bridge |
Guopeng ZHANG1,2( ),Chuangchuang JIANG1,2,Haijun TAO1,Zhuo CHEN3 |
1. College of Electrical Engineering and Automation, Henan Polytechnic University, Jiaozuo 454003, China 2. Henan Key Laboratory of Intelligent Detection and Control of Coal Mine Equipment, Henan Polytechnic University, Jiaozuo 454003, China 3. Research Department of Renewable Generation System, Institute of Electrical Engineering of the Chinese Academy of Sciences, Beijing 100190, China |
引用本文:
张国澎,蒋闯闯,陶海军,陈卓. 双有源桥无回流功率控制的死区影响与补偿[J]. 浙江大学学报(工学版), 2024, 58(11): 2406-2416.
Guopeng ZHANG,Chuangchuang JIANG,Haijun TAO,Zhuo CHEN. Dead band effect and compensation for return-free power control of dual active bridge. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2406-2416.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.022
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2406
|
1 |
赵彪, 安峰, 宋强, 等 双有源桥式直流变压器发展与应用[J]. 中国电机工程学报, 2021, 41 (1): 288- 298 ZHAO Biao, AN Feng, SONG Qiang, et al Development and application of DC transformer based on dual-active-bridge[J]. Proceedings of the CSEE, 2021, 41 (1): 288- 298
|
2 |
刘健, 魏昊焜, 张志华, 等 未来配电网的主要形态: 基于储能的低压直流微电网[J]. 电力系统保护与控制, 2018, 46 (18): 11- 16 LIU Jian, WEI Haokun, ZHANG Zhihua, et al Future architecture of power distribution network: low-voltage direct current micro-grids based on energy storage[J]. Power System Protection and Control, 2018, 46 (18): 11- 16
doi: 10.7667/PSPC201852
|
3 |
LÓPEZ-RODRÍGUEZ K, GIL-GONZÁLEZ W, ESCOBAR-MEJÍA A Design and implementation of a PI-PBC to manage bidirectional power flow in the DAB of an SST[J]. Results in Engineering, 2022, 14: 100437
doi: 10.1016/j.rineng.2022.100437
|
4 |
王荣闯, 王杉杉, 高明, 等 基于LCL谐振型双有源桥的三端口DC-DC变换器及其解耦控制[J]. 浙江大学学报: 工学版, 2021, 55 (8): 1585- 1593 WANG Rongchuang, WANG Shanshan, GAO Ming, et al Three-port DC-DC converter based on LCL resonant dual active bridge and its decoupling control[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (8): 1585- 1593
|
5 |
朱介北, 李峰, 俞露杰, 等 基于固态变压器的互联交直流微电 网功率互济自主控制[J]. 电网技术, 2023, 47 (1): 284- 295 ZHU Jiebei, LI Feng, YU Lujie, et al Autonomous power mutual support control for AC/DC microgrid interconnected by solid state transformer[J]. Power System Technology, 2023, 47 (1): 284- 295
|
6 |
AKAGI H, KITADA R Control and design of a modular multilevel cascade BTB system using bidirectional isolated DC/DC converters[J]. IEEE Transactions on Power Electronics, 2011, 26 (9): 2457- 2464
doi: 10.1109/TPEL.2011.2107752
|
7 |
SHI J, GOU W, YAUN H, et al Research on voltage and power balance control for cascaded modular solid-state transformer[J]. IEEE Transactions on Power Electronics, 2011, 26 (4): 1154- 1166
doi: 10.1109/TPEL.2011.2106803
|
8 |
SHI H, WEN H, CHEN J, et al Minimum-backflow-power scheme of DAB-based solid-state transformer with extended-phase-shift control[J]. IEEE Transactions on Industry Applications, 2018, 54 (4): 3483- 3496
doi: 10.1109/TIA.2018.2819120
|
9 |
程红, 高巧梅, 朱锦标, 等 基于双重移相控制的双向全桥DC-DC变换器动态建模与最小回流功率控制[J]. 电工技术学报, 2014, 29 (3): 245- 253 CHENG Hong, GAO Qiaomei, ZHU Jinbiao, et al Dynamic modeling and minimum backflow power controlling of the bi-directional full-bridge DC-DC converters based on dual-phase-shifting control[J]. Transactions of China Electrotechnical Society, 2014, 29 (3): 245- 253
doi: 10.3969/j.issn.1000-6753.2014.03.031
|
10 |
BAI H, MI C Eliminate reactive power and increase system efficiency of isolated bidirectional dual-active-bridge DC-DC converters using novel dual-phase-shift control[J]. IEEE Transactions on Power Electronics, 2008, 23 (6): 2905- 2914
doi: 10.1109/TPEL.2008.2005103
|
11 |
胡燕, 张天晖, 杨立新, 等 双重移相DAB变换器回流功率优化与电流应力优化的对比研究[J]. 中国电机工程学报, 2020, 40 (Suppl.1): 243- 253 HU Yan, ZHANG Tianhui, YANG Lixin, et al comparative study of reactive power optimization and current Stress optimization of DAB converter with dual phase shift control[J]. Proceedings of the CSEE, 2020, 40 (Suppl.1): 243- 253
|
12 |
侯聂, 宋文胜, 王顺亮 全桥隔离DC/DC变换器相移控制归一化及其最小回流功率控制[J]. 中国电机工程学报, 2016, 36 (2): 499- 506 HOU Nie, SONG Wensheng, WANG Shunliang Normalization of phase shift control and minimum reflux power control of full-bridge isolated DC/DC converters[J]. Proceedings of the CSEE, 2016, 36 (2): 499- 506
|
13 |
WU F, FENG F, GOOI H B Cooperative triple-phase-shift control for isolated DAB DC–DC converter to improve current characteristics[J]. IEEE Transactions on Industrial Electronics, 2019, 66 (9): 7022- 7031
doi: 10.1109/TIE.2018.2877115
|
14 |
TAKAGI K, FUJITA H. Dynamic control and dead-time compensation method of an isolated dual-active-bridge DC-DC converter [C]// Jointly Owned by EPE Association and IEEE PELS. Geneva: IEEE, 2015: 1-15.
|
15 |
BEHZADIRAFI S, LEÓN D F Closed-form determination of the impedance locus plot of fault current limiters: asymmetrical faults[J]. IEEE Transactions on Power Delivery, 2020, 35 (2): 754- 762
doi: 10.1109/TPWRD.2019.2925521
|
16 |
ZHAO B, SONG Q, LIU W, et al Dead-time effect of the high-frequency isolated bidirectional full-bridge DC–DC converter: comprehensive theoretical analysis and experimental verification[J]. IEEE Transactions on Power Electronics, 2014, 29 (4): 1667- 1680
doi: 10.1109/TPEL.2013.2271511
|
17 |
SONG C, CHEN A, CHEN J, et al. Dead-time effect analysis of dual active bridge DC-DC converter with dual-phase-shift control [C]// Chinese Automation Congress. Jinan: IEEE, 2017: 6545-6550.
|
18 |
刘海洋, 崔淑梅, 孙赫阳 开关缓冲电容与死区效应对双有源桥式变换器传输功率影响[J]. 高电压技术, 2023, 49 (2): 727- 737 LIU Haiyang, CUI Shumei, SUN Heyang Impact of snubber capacitance and dead-time effects on dual active bridge converters power transmission[J]. High Voltage Engineering, 2023, 49 (2): 727- 737
|
19 |
WEI S, ZHAO Z, LI K, et al Deadbeat current controller for bidirectional dual-active-bridge converter using an enhanced SPS modulation method[J]. IEEE Transactions on Power Electronics, 2021, 36 (2): 1274- 1279
doi: 10.1109/TPEL.2020.3007706
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|