土木工程、交通工程 |
|
|
|
|
基于手机信令数据的贝叶斯优化出行链识别 |
王殿海( ),徐望,蔡正义*( ),曾佳棋,黄宇浪 |
浙江大学 智能交通研究所,浙江 杭州 310058 |
|
Bayesian optimized trip chain identification based on mobile signaling data |
Dianhai WANG( ),Wang XU,Zhengyi CAI*( ),Jiaqi ZENG,Yulang HUANG |
Institute of Intelligent Transportation Systems, Zhejiang University, Hangzhou 310058, China |
引用本文:
王殿海,徐望,蔡正义,曾佳棋,黄宇浪. 基于手机信令数据的贝叶斯优化出行链识别[J]. 浙江大学学报(工学版), 2024, 58(11): 2393-2405.
Dianhai WANG,Wang XU,Zhengyi CAI,Jiaqi ZENG,Yulang HUANG. Bayesian optimized trip chain identification based on mobile signaling data. Journal of ZheJiang University (Engineering Science), 2024, 58(11): 2393-2405.
链接本文:
https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.11.021
或
https://www.zjujournals.com/eng/CN/Y2024/V58/I11/2393
|
1 |
SHIFTAN Y Practical approach to model trip chaining[J]. Transportation Research Record: Journal of the Transportation Research Board, 1998, 1645 (1): 17- 23
doi: 10.3141/1645-03
|
2 |
杨励雅, 李娟 居民出行链、出行方式与出发时间联合选择的交叉巢式Logit模型[J]. 北京大学学报: 自然科学版, 2017, 53 (4): 722- 730 YANG Liya, LI Juan Cross-nested logit model for the joint choice of residential location, travel mode, and departure time[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2017, 53 (4): 722- 730
|
3 |
HUANG Y, WANG D, XU W, et al Accurate map matching method for mobile phone signaling data under spatio-temporal uncertainty[J]. IEEE Transactions on Intelligent Transportation Systems, 2023, 25 (2): 1418- 1429
|
4 |
CAI Z, WANG D, CHEN X (M) A novel trip coverage index for transit accessibility assessment using mobile phone data[J]. Journal of Advanced Transportation, 2017, 2017 (1): 1- 14
|
5 |
WAN L, YANG T, JIN Y, et al Estimating commuting matrix and error mitigation: a complementary use of aggregate travel survey, location-based big data and discrete choice models[J]. Travel Behaviour and Society, 2021, 25: 102- 111
doi: 10.1016/j.tbs.2021.04.012
|
6 |
YU Q, LI W, YANG D, et al Mobile phone data in urban commuting: a network community detection-based framework to unveil the spatial structure of commuting demand[J]. Journal of Advanced Transportation, 2020, 2020 (1): 1- 15
|
7 |
CHIN K, HUANG H, HORN C, et al Inferring fine-grained transport modes from mobile phone cellular signaling data[J]. Computers, Environment and Urban Systems, 2019, 77 (2): 101348
|
8 |
陈艳艳, 张野, 孙浩冬 基于手机信令数据的旅游客流特征分析[J]. 北京工业大学学报, 2022, 48 (8): 842- 850 CHEN Yanyan, ZHANG Ye, SUN Haodong Analysis of tourist flow characteristics based on mobile phone signaling data[J]. Journal of Beijing University of Technology, 2022, 48 (8): 842- 850
|
9 |
CHEN X, WAN X, LI Q, et al Trip-chain-based travel-mode-shares-driven framework using cellular signaling data and web-based mapping service data[J]. Transportation Research Record: Journal of the Transportation Research Board, 2019, 2673 (3): 51- 64
doi: 10.1177/0361198119834006
|
10 |
BONNETAIN L, FURNO A, EL FAOUZI N E, et al TRANSIT: fine-grained human mobility trajectory inference at scale with mobile network signaling data[J]. Transportation Research Part C: Emerging Technologies, 2021, 130: 103257
doi: 10.1016/j.trc.2021.103257
|
11 |
MARTIN H, HONG Y, WIEDEMANN N, et al Trackintel: an open-source Python library for human mobility analysis[J]. Computers, Environment and Urban Systems, 2023, 101 (11): 101938
|
12 |
JIANG H, YANG F, SU W, et al Activity location recognition from mobile phone data using improved HAC and Bi-LSTM[J]. IET Intelligent Transport Systems, 2022, 16 (10): 1364- 1379
doi: 10.1049/itr2.12211
|
13 |
杨飞, 姜海航, 姚振兴, 等 基于手机信令数据的出行端点识别效果评估[J]. 西南交通大学学报, 2021, 56 (5): 928- 936 YANG Fei, JIANG Haihang, YAO Zhenxing, et al Evaluation of activity location recognition using cellular signaling data[J]. Journal of Southwest Jiaotong University, 2021, 56 (5): 928- 936
|
14 |
NI L, WANG X, CHEN X A spatial econometric model for travel flow analysis and real-world applications with massive mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2018, 86: 510- 526
doi: 10.1016/j.trc.2017.12.002
|
15 |
林楠, 尹凌, 赵志远 基于滑动窗口的手机定位数据个体停留区域识别算法[J]. 地球信息科学学报, 2018, 20 (6): 762- 771 LIN Nan, YIN Ling, ZHAO Zhiyuan Detecting individual stay areas from mobile phone location data based on moving windows[J]. Journal of Geo-information Science, 2018, 20 (6): 762- 771
doi: 10.12082/dqxxkx.2018.180087
|
16 |
MARRA A D, BECKER H, AXHAUSEN K W, et al Developing a passive GPS tracking system to study long-term travel behavior[J]. Transportation Research Part C: Emerging Technologies, 2019, 104: 348- 368
doi: 10.1016/j.trc.2019.05.006
|
17 |
JIANG H, YANG F, ZHU X, et al Improved F-DBSCAN for trip end identification using mobile phone data in combination with base station density[J]. Journal of Advanced Transportation, 2022, 2022 (1): 1- 17
|
18 |
HUANG Z, LING X, WANG P, et al Modeling real-time human mobility based on mobile phone and transportation data fusion[J]. Transportation Research Part C: Emerging Technologies, 2018, 96: 251- 269
doi: 10.1016/j.trc.2018.09.016
|
19 |
FEKIH M, BELLEMANS T, SMOREDA Z, et al A data-driven approach for origin–destination matrix construction from cellular network signalling data: a case study of Lyon region (France)[J]. Transportation, 2021, 48 (4): 1671- 1702
doi: 10.1007/s11116-020-10108-w
|
20 |
王梅红, 侯笑宇, 司连法, 等 地理空间数据结合手机信令等多源数据刻画城市居民出行特征[J]. 测绘通报, 2022, (5): 162- 165 WANG Meihong, HOU Xiaoyu, SI Lianfa, et al Geospatial data combined with multi-source data such as mobile phone signaling data to depict the travel characteristics of city residents[J]. Bulletin of Surveying and Mapping, 2022, (5): 162- 165
|
21 |
HUAN L, ZHENBO L. Identification method of residents’ medical travel behavior characteristics driven by mobile signaling data: a case study of Kunshan [C/OL]// 5th International Conference on Information Science, Computer Technology and Transportation . Shenyang: IEEE, 2020: 198-207[2022-11-15]. https://ieeexplore.ieee.org/document/9363760/.
|
22 |
SIŁA-NOWICKA K, VANDROL J, OSHAN T, et al Analysis of human mobility patterns from GPS trajectories and contextual information[J]. International Journal of Geographical Information Science, 2016, 30 (5): 881- 906
doi: 10.1080/13658816.2015.1100731
|
23 |
HORN C, KLAMPFL S, CIK M, et al Detecting outliers in cell phone data: correcting trajectories to improve traffic modeling[J]. Transportation Research Record: Journal of the Transportation Research Board, 2014, 2405 (1): 49- 56
doi: 10.3141/2405-07
|
24 |
CAI M, ZHANG Z, XIONG C, et al An adaptive staying point recognition algorithm based on spatiotemporal characteristics using cellular signaling data[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (8): 10458- 10468
doi: 10.1109/TITS.2021.3094636
|
25 |
BACHIR D, KHODABANDELOU G, GAUTHIER V, et al Inferring dynamic origin-destination flows by transport mode using mobile phone data[J]. Transportation Research Part C: Emerging Technologies, 2019, 101: 254- 275
doi: 10.1016/j.trc.2019.02.013
|
26 |
周常勇. 基于移动信令数据的城市交通出行轨迹匹配技术[D]. 成都: 西南交通大学, 2016. ZHOU Changyong. On the cellular signaling based transport trajectory matching technologies in urban area [D]. Chengdu: Southwest Jiaotong University, 2016.
|
27 |
ZAR J H. Biostatistical analysis [M]. 5th ed. Upper Saddle River: Prentice Hall, 2010: 614-617.
|
28 |
MARDIA K V, JUPP P E. Directional statistics [M]. Chichester: Wiley, 2000: 14-19.
|
29 |
BERGSTRA J, BARDENET R, BENGIO Y, et al. Algorithms for hyper-parameter optimization [C]// 25th Annual Conference on Neural Information Processing Systems . Granada: Neural Information Processing Systems Foundation, 2011: 2546-2554.
|
|
Viewed |
|
|
|
Full text
|
|
|
|
|
Abstract
|
|
|
|
|
Cited |
|
|
|
|
|
Shared |
|
|
|
|
|
Discussed |
|
|
|
|