Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (10): 2096-2103    DOI: 10.3785/j.issn.1008-973X.2024.10.013
机械工程、能源工程     
基于氦气置换的超大型土工离心机缩比模型温控实验研究
郑传祥1(),戴煜宸1,魏双2,颜加明3,黄维3
1. 浙江大学 能源工程学院,浙江 杭州 310058
2. 杭州中能透平机械装备股份有限公司,浙江 杭州 310018
3. 中国电建集团华东勘测设计研究院有限公司,浙江 杭州 311122
Experimental study on temperature control of scaled model of ultra-large geotechnical centrifuge based on helium replacement
Chuanxiang ZHENG1(),Yuchen DAI1,Shuang WEI2,Jiaming YAN3,Wei HUANG3
1. College of Energy Engineering, Zhejiang University, Hangzhou 310058, China
2. Hangzhou Chinen Steam Turbine Power Limited Company, Hangzhou 310018, China
3. Power China Huadong Engineering Corporation Limited, Hangzhou 311122, China
 全文: PDF(1363 KB)   HTML
摘要:

为了解决常压下超重力离心模拟与实验装置(CHIEF)的温控问题,提出以氦气置换机室内空气的温控方法,建立区分不同热源的传热模型,通过降低风阻功率减少源头热量产生. 建造CHIEF的缩比模型实验装置(机室直径缩比为1∶20),分别在空气和氦气介质下测定风阻功率和机室内的温度. 实验结果表明,氦气置换空气后,风阻功率降低了82.4%,机室内的最高温度从56.4 ℃降至32.9 ℃,机室内的最大温差从6.8 ℃降至4.1 ℃. 传热模型的分析结果表明,气体与机室侧壁面的摩擦产热是造成机室温度升高的主要原因,氦气置换后的原型机机室温度可控制在25.7 ℃,实现了机室最高温度不超过(40±5) ℃的温控目标.

关键词: 超重力离心模拟与实验装置(CHIEF)土工离心机温控风阻功率氦气置换    
Abstract:

A temperature control method was proposed using helium to replace the air in the machine room, and a heat transfer model for distinguishing different heat sources was established to address the temperature control issue of the centrifugal hypergravity and interdisciplinary experiment facility (CHIEF) under normal pressure. By reducing the windage power, the heat generation was reduced from the source. A scaled model experiment facility of the CHIEF was constructed (the diameter reduction ratio of the machine room is 1∶20), the windage power and the machine room temperature under air or helium medium were measured respectively. Experimental results showed that with the helium replacement of air, the windage power dropped by 82.4%, and the highest temperature in the machine room decreased from 56.4 ℃ to 32.9 ℃, while the maximum temperature difference decreased from 6.8 ℃ to 4.1 ℃. Analysis results of the heat transfer model indicated that the friction between the air and the sidewall was the chief cause of the temperature rise in the machine room, and the temperature of the machine room was controlled at 25.7 ℃ in the case of helium replacement, achieving the temperature control target of the maximum temperature in the machine room not exceeding (40±5) ℃.

Key words: centrifugal hypergravity and interdisciplinary experiment facility (CHIEF)    geotechnical centrifuge    temperature control    windage power    helium replacement
收稿日期: 2023-08-20 出版日期: 2024-09-27
CLC:  TH 3  
基金资助: 国家重大科技基础设施资助项目(2017-000052-73-01-002083).
作者简介: 郑传祥(1968—),男,教授,从事超重力土工离心机温控研究. orcid.org/0000-0002-8904-0943. E-mail:zhchx@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郑传祥
戴煜宸
魏双
颜加明
黄维

引用本文:

郑传祥,戴煜宸,魏双,颜加明,黄维. 基于氦气置换的超大型土工离心机缩比模型温控实验研究[J]. 浙江大学学报(工学版), 2024, 58(10): 2096-2103.

Chuanxiang ZHENG,Yuchen DAI,Shuang WEI,Jiaming YAN,Wei HUANG. Experimental study on temperature control of scaled model of ultra-large geotechnical centrifuge based on helium replacement. Journal of ZheJiang University (Engineering Science), 2024, 58(10): 2096-2103.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.10.013        https://www.zjujournals.com/eng/CN/Y2024/V58/I10/2096

图 1  土工离心机壁面热量传递路径
介质$ \rho /(\mathrm{k}\mathrm{g}\cdot {\mathrm{m}}^{-3}) $$ \mu /(\mathrm{P}\mathrm{a}\cdot \mathrm{s}) $$ {c}_{p}/(\mathrm{J}\cdot {\mathrm{k}\mathrm{g}}^{-1}\cdot {\mathrm{K}}^{-1}) $$ \lambda /(\mathrm{W}\cdot {\mathrm{m}}^{-1}\cdot {\mathrm{K}}^{-1}) $
空气1.161.81×10?51 005.00.025 9
氦气0.172.02×10?55 193.20.151 8
表 1  空气与氦气物性参数
图 2  缩比模型的实验原理图
图 3  缩比模型实验系统
图 4  安装和移除转子测量风阻功率
图 5  氦气和空气工况下风阻功率拟合
介质$ {k}^{{'}}{k}^{{''}} $$ k $$ q $$ p $$ {R}^{2} $
空气3.52×10?54.08×10?5?0.091 62.908 40.999 9
氦气3.52×10?55.98×10?6?0.036 42.963 60.992 6
表 2  氦气和空气工况下风阻功率拟合参数
图 6  不同介质下的机室内壁面温度对比
图 7  不同线速度下机室内温升
图 8  不同转速下的介质最大温差
1 ZENG X, LIM S The influence of variation of centrifugal acceleration and model container size on accuracy of centrifuge test[J]. Geotechnical Testing Journal, 2002, 25 (1): 24- 43
doi: 10.1520/GTJ11077J
2 NG C W W, ZHANG C, FARIVAR A, et al Scaling effects on the centrifuge modelling of energy piles in saturated sand[J]. Géotechnique Letters, 2020, 10 (1): 57- 62
3 WOODWARD P K, BRENNAN A, LAGHROUCHE O, et al. Geotechnical centrifuge and full-scale laboratory testing for performance evaluation of conventional and high-speed railway track structures [C]// Proceedings of the 4th International Conference on Transportation Geotechnics Volume2 . [S.l.]: Springer, 2022, 165: 957−968.
4 贾普照. 稳态加速度模拟试验设备: 离心机概论与设计[M]. 北京: 国防工业出版社, 2013: 25−27.
5 林伟岸, 郑传祥, 蒋建群, 等 大容量超重力离心机温控缩比模型试验[J]. 浙江大学学报: 工学版, 2020, 54 (8): 1587- 1592
LIN Weian, ZHENG Chuanxiang, JIANG Jianqun, et al Temperature control test of scaled model of high capacity hypergravity centrifuge[J]. Journal of Zhejiang University: Engineering Science, 2020, 54 (8): 1587- 1592
6 尹益辉, 余绍蓉, 冯晓军, 等 机室开有通风口的土工离心机的风阻功率[J]. 绵阳师范学院学报, 2010, 29 (5): 1- 5
YIN Yihui, YU Shaorong, FENG Xiaojun, et al Aerodynamic power of geotechnical centrifuges with holed chamber[J]. Journal of Mianyang Normal University, 2010, 29 (5): 1- 5
doi: 10.3969/j.issn.1672-612X.2010.05.001
7 郝雨, 尹益辉, 万强, 等 土工离心机风阻计算方法的对比研究[J]. 装备环境工程, 2018, 15 (3): 61- 66
HAO Yu, YIN Yihui, WAN Qiang, et al Comparative study on estimation methods of wind resistance of geotechnical centrifuges[J]. Equipment Environmental Engineering, 2018, 15 (3): 61- 66
8 SAWADA M, NISHIMOTO S, OKADA T New rapid evaluation for long-term behavior in deep geological repository by geotechnical centrifuge—part 2: numerical simulation of model tests in isothermal condition[J]. Rock Mechanics and Rock Engineering, 2017, 50: 159- 169
doi: 10.1007/s00603-016-1061-6
9 KRISHNAIAH S, SINGH D N Determination of thermal properties of soils in a geotechnical centrifuge[J]. Journal of Testing and Evaluation, 2006, 34 (4): 12009
doi: 10.1520/JTE12009
10 尹益辉, 郝雨, 黎启胜, 等 稳定运行时转臂式离心机机室内的气压和自然排风分析[J]. 绵阳师范学院学报, 2018, 37 (11): 1- 6
YIN Yihui, HAO Yu, LI Qisheng, et al An analysis on air pressure and natural air exhausting in the work chamber of a steadily running rotary arm type centrifuge[J]. Journal of Mianyang Teachers’ College, 2018, 37 (11): 1- 6
11 黄鹏, 尹益辉, 李顺利, 等 离心机风阻功率及启动过程分析[J]. 装备环境工程, 2015, 12 (5): 105- 110
HUANG Peng, YIN Yihui, LI Shunli, et al Analysis of wind resistance power and starting process of centrifuge[J]. Equipment Environmental Engineering, 2015, 12 (5): 105- 110
12 王永志, 陈卓识, 孙锐 土工离心机稳态风阻功率简化估算方法与冷却设计优化[J]. 地震工程与工程振动, 2014, 34 (Suppl.1): 909- 914
WANG Yongzhi, CHEN Zhuoshi, SUN Rui Simplified calculation technique of steady-state wind resistance power for geotechnical centrifuge and optimization cooling design[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34 (Suppl.1): 909- 914
13 尹益辉, 范志庚, 万强, 等 土工离心机稳定运行时机室的自然排风效应研究[J]. 绵阳师范学院学报, 2017, 36 (11): 1- 7
YIN Yihui, FAN Zhigeng, WAN Qiang, et al On natural air exhaust of the chamber of a steady operating geotechnical centrifuge[J]. Journal of Mianyang Teachers’ College, 2017, 36 (11): 1- 7
doi: 10.3969/j.issn.1672-612X.2017.11.001
14 郭轶楠, 杨毅, 王亚林, 等 基于ZJU400土工离心机的CFD模拟方法[J]. 装备环境工程, 2020, 17 (11): 85- 89
GUO Yinan, YANG Yi, WANG Yalin, et al CFD simulation method based on ZJU400 geotechnical centrifuge[J]. Equipment Environmental Engineering, 2020, 17 (11): 85- 89
15 邵文博, 任晓栋, 胡博 高速土工离心机温升的数值模拟[J]. 装备环境工程, 2022, 19 (12): 95- 103
SHAO Wenbo, REN Xiaodong, HU bo Numerical simulation on temperature rise of high-speed geotechnical centrifuge[J]. Equipment Environmental Engineering, 2022, 19 (12): 95- 103
16 尹益辉, 余绍蓉, 冯晓军, 等 密闭机室型土工离心机的风阻功率[J]. 绵阳师范学院学报, 2010, 29 (2): 1- 5
YIN Yihui, YU Shaorong, FENG Xiaojun, et al Aerodynamic power of geotechnical centrifuges with closed chamber[J]. Journal of Mianyang Normal University, 2010, 29 (2): 1- 5
doi: 10.3969/j.issn.1672-612X.2010.02.001
17 颜加明, 林志勇, 孙文静, 等 机室真空度对高速土工离心机风阻和环境温度影响的数值研究[J]. 装备环境工程, 2022, 19 (10): 120- 125
YAN Jiaming, LIN Zhiyong, SUN Wenjing, et al Effects of cavity vacuum degree on wind resistance and thermal environment of high-speed geotechnical centrifuge[J]. Equipment Environmental Engineering, 2022, 19 (10): 120- 125
18 郑传祥, 陈建阳, 蒋建群, 等 低真空度下土工离心机产热机理试验研究[J]. 装备环境工程, 2020, 17 (3): 84- 88
ZHENG Chuanxiang, CHEN Jianyang, JIANG Jianqun, et al Experiment of heat generation mechanism of geotechnical centrifuge under low vacuum degrees[J]. Equipment Environmental Engineering, 2020, 17 (3): 84- 88
19 郑传祥, 魏双, 周海峰. 一种大型土工离心机降低风阻功率的装置及方法: 201910653484.2 [P]. 2019−07−19.
20 张宇亭, 李建东, 安晓宇, 等. TK-C500土工离心机实验室的建设与应用[M]. 北京: 人民交通出版社, 2019: 88.
21 郝雨, 尹益辉, 万强, 等 基于CFD的土工离心机风阻及流场特性分析[J]. 装备环境工程, 2018, 15 (2): 52- 56
HAO Yu, YIN Yihui, WAN Qiang, et al Wind resistance and flow field characteristic analysis of geotechnical centrifuges based on CFD[J]. Equipment Environmental Engineering, 2018, 15 (2): 52- 56
22 邵文博, 任晓栋, 胡博 基于CFD方法的土工离心机数值建模[J]. 装备环境工程, 2022, 19 (10): 110- 119
SHAO Wenbo, REN Xiaodong, HU Bo Numerical modeling of geotechnical centrifuge based on CFD method[J]. Equipment Environmental Engineering, 2022, 19 (10): 110- 119
23 陶文铨. 传热学 [M]. 第五版. 北京: 高等教育出版社, 2019: 236−237.
24 贾普照 稳态加速度模拟试验设备: 离心机设计(14)[J]. 航天器环境工程, 2011, 28 (2): 194- 203
JIA Puzhao Steady state acceleration simulation test equipment: centrifuge design (serial No. 14)[J]. Spacecraft Environment Engineering, 2011, 28 (2): 194- 203
doi: 10.3969/j.issn.1673-1379.2011.02.019
[1] 林伟岸,郑传祥,蒋建群,凌道盛,陈云敏. 大容量超重力离心机温控缩比模型试验[J]. 浙江大学学报(工学版), 2020, 54(8): 1587-1592.
[2] 何绍衡,夏唐代,于丙琪,丁智,高敏,单华峰. 温度效应对钙质砂体积应变和固结特性的影响[J]. 浙江大学学报(工学版), 2020, 54(2): 221-232.
[3] 冯斌, 龚国芳, 杨华勇. 大流量液压系统的油温控制[J]. J4, 2011, 45(4): 741-746.