Please wait a minute...
浙江大学学报(工学版)  2020, Vol. 54 Issue (8): 1587-1592    DOI: 10.3785/j.issn.1008-973X.2020.08.018
土木工程、交通工程     
大容量超重力离心机温控缩比模型试验
林伟岸(),郑传祥*(),蒋建群,凌道盛,陈云敏
浙江大学 超重力研究中心,软弱土与环境土工教育部重点实验室,浙江 杭州 310058
Temperature control test of scaled model of high capacity hypergravity centrifuge
Wei-an LIN(),Chuan-xiang ZHENG*(),Jian-qun JIANG,Dao-sheng LING,Yun-min CHEN
Research Center of Hypergravity, MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1639 KB)   HTML
摘要:

为了解决超重力离心机在加速度大于1000g时由于风阻功率引起的主机室温升超高的问题,通过对超重力离心机产热机理及散热机理的研究,提出对应的温度控制策略. 对超重力加速度为1500g的大容量土工离心机进行1∶20缩比,基于以相同空气流速流过侧壁引起的摩擦产热相同的原理进行模拟试验,即在高速转子最外端线速度同为290 m/s下进行风阻功率测试及温度调控试验研究. 总结缩比离心试验机机室内的真空度、侧壁冷却器温度、侧壁冷却器内冷却液体积流量等对主机室温度的影响规律,得到最佳温控调节方案,提出超重力离心模拟与试验装置(CHIEF)离心机室温控方案. 缩比模拟试验结果可为原型机的设计提供设计参考.

关键词: 超重力离心机风阻功率产热散热真空液冷    
Abstract:

The temperature rise in the main engine room caused by the wind resistance power is high when the acceleration of the high gravity centrifuge reaches more than 1000g. The corresponding temperature control strategy was proposed through the study of the heat generation mechanism and heat dissipation mechanism of the high gravity centrifuge. In order to solve the above problem, a 1∶20 scaled test was carried out on a large capacity geocentrifuge with an acceleration of 1500g. The principle of the same friction heat generation caused by the same air velocity flowing through the side wall was used for the simulation test, that is, the linear velocity at the outermost end of the high-speed rotor was the same as 290 m/s, and the wind resistance power test and the temperature control methods study were conducted in this speed. The influence of the vacuum degree, the temperature of the side wall cooler and the volume flow of the coolant in the side wall cooler on the temperature of the main engine room was summarized. Thus, a temperature control scheme of centrifugal hypergravity and interdisciplinary experiment facility (CHIEF) was proposed. The test results from the scale model can provide a design reference for the design of the prototype.

Key words: high gravity centrifuge    wind resistance power    heat generation    heat dissipation    vacuum    liquid cooling
收稿日期: 2020-01-14 出版日期: 2020-08-28
CLC:  TH 3  
基金资助: 基本科研业务费资助项目(2017XZZX003);浙江省科技专项超重力离心模拟与实验装置资助项目;超重力离心机模拟试验装置预研资助项目(113000-194531802)
通讯作者: 郑传祥     E-mail: inweian@zju.edu.cn;zhchx@zju.edu.cn
作者简介: 林伟岸(1981—),男,高级工程师,从事环境岩土工程和超重力实验研究. orcid.org/0000-0002-3864-451X. E-mail: inweian@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
林伟岸
郑传祥
蒋建群
凌道盛
陈云敏

引用本文:

林伟岸,郑传祥,蒋建群,凌道盛,陈云敏. 大容量超重力离心机温控缩比模型试验[J]. 浙江大学学报(工学版), 2020, 54(8): 1587-1592.

Wei-an LIN,Chuan-xiang ZHENG,Jian-qun JIANG,Dao-sheng LING,Yun-min CHEN. Temperature control test of scaled model of high capacity hypergravity centrifuge. Journal of ZheJiang University (Engineering Science), 2020, 54(8): 1587-1592.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2020.08.018        http://www.zjujournals.com/eng/CN/Y2020/V54/I8/1587

图 1  风阻功率测试原理图
图 2  缩比模型试验装置主视图
图 3  高速转子缩比图
图 4  绝热主机室安装图
图 5  带恒温控制的冷冻机
p/kPa Δt1 Q1/kW Q2/kW Q/kW Pin/kW
1 4.37 3.61 0.264 3.874 4.280
3 4.13 3.41 0.355 3.765 4.708
5 4.75 3.92 0.471 4.391 5.375
10 5.80 4.79 0.611 5.401 6.450
30 9.70 8.01 1.090 9.100 11.118
50 12.10 9.99 1.994 11.984 15.840
表 1  缩比模拟试验参数记录表
图 6  试验测得的风阻功率和输入功率对比
图 7  有、无侧壁冷却的温度对比试验结果(10 kPa)
图 8  不同压力下主机室内温度
图 9  温度与绝对压力之间的关系曲线
1 YIN Y H, DOU L L Aerodynamic power of geotechnical centrifuge[J]. Advanced Materials Research, 2012, 421: 788- 791
2 YU H, YIN Y H, WAN Q. Wind resistance and flow characteristic analysis of geotechnical centrifuges based on computational fluid dynamics [C] // 19th International Conference on Finite Elements in Flow Problems. Rome: Elsevier, 2017.
3 王永志, 陈卓识, 孙锐 土工离心机稳态风阻功率简化估算方法与冷却设计优化[J]. 地震工程与工程振动, 2014, 34 (Suppl.1): 909- 914
WANG Yong-zhi, CHEN Zhuo-shi, SUN Rui Simplified calculation technique of steady-state wind resistance power for geotechnical centrifuge and optimization cooling design[J]. Earthquake Engineering and Engineering Dynamics, 2014, 34 (Suppl.1): 909- 914
4 KRISHNAIAH S, SINGH D N. Centrifuge modeling of heat and mass transfer through soils [C]// 12th Asian Regional Conference on Soil Mechanics and Geotechnical Engineering. Singapore: [s.n.], 2003: 393-396.
5 邢建营, 邢义川, 梁建辉 土工离心模型试验研究的进展与思考[J]. 水利与建筑工程学报, 2005, 3 (1): 27- 31
XING Jian-ying, XING Yi-chuan, LIANG Jian-hui Development and thoughts of geotechnical centrifuge modeling[J]. Journal of Water Resources and Architectural Engineering, 2005, 3 (1): 27- 31
doi: 10.3969/j.issn.1672-1144.2005.01.008
6 林伟岸, 陈云敏, 杜尧舜, 等 高校建设国家重大科技基础设施机制的探索与实践[J]. 实验技术与管理, 2019, 36 (4): 250- 252
LIN Wei-an, CHEN Yun-min, DU Yao-shun, et al Exploration and practice on mechanism of constructing national major science and technology infrastructure in colleges and universities[J]. Experimental Technology and Management, 2019, 36 (4): 250- 252
7 王永志. 大型动力离心机设计理论与关键技术研究[D]. 哈尔滨: 中国地震局工程力学研究所, 2013.
WANG Yong-zhi. Study on design theory and key technology of large dynamic centrifuge [D]. Haerbin: Institute of Engineering Mechanics, China Earthquake Administration, 2013.
8 NICOLAS-FONT J. Design of geotechnical centrifuge [C]// Centrifuge 88. Rotterdam: Balkema, 1988: 189-192.
9 濮家骝 土工离心模型试验及其应用的发展趋势[J]. 岩土工程学报, 1996, 18 (5): 92- 94
PU Jia-liu Development trend of the geotechnical centrifuge modeling test and application[J]. Chinese Journal of Geotechnical Engineering, 1996, 18 (5): 92- 94
doi: 10.3321/j.issn:1000-4548.1996.05.018
10 CRAIG W H Edouard phillips and the idea of centrifuge modeling[J]. Geotechnique, 1989, (39): 679- 700
11 郑传祥, 陈建阳, 蒋建群, 等 低真空度下土工离心机产热机理试验研究[J]. 装备环境工程, 2020, 17 (3): 84- 88
ZHENG Chuan-xiang, CHEN Jian-yang, JIANG Jian-qun, et al Experimental study on heat generation mechanism of geotechnical centrifuge under different vacuum degrees[J]. Equipment Environmental Engineering, 2020, 17 (3): 84- 88
12 郝雨, 尹益辉, 万强, 等 基于CFD 的土工离心机风阻及流场特性分析[J]. 装备环境工程, 2018, 15 (2): 52- 56
HAO Yu, YIN Yi-hui, WAN Qiang, et al Wind resistance and flow field characteristic analysis of geotechnical centrifuges based on CFD[J]. Equipment Environmental Engineering, 2018, 15 (2): 52- 56
13 DU Y L, ZHU S Z, LIU L Y, et al. LXJ-4-450 geotechnical centrifuge in Beijing [C] // Centrifuge 94. Singapore: [s.n.], 1994: 35-39.
14 KRISHNAIAH S, SINGH D N Determination of thermal properties of soils in a geotechnical centrifuge[J]. Journal of Testing and Evaluation, 2006, 34 (4): 319- 326
15 白冰, 周健 土工离心模型试验技术的一些进展[J]. 大坝观测与土工测试, 2001, 25 (1): 36- 39
BAI Bing, ZHOU Jian Some advances in geotechnical centrifuge model test technology[J]. Dam Observation and Geotechnical Tests, 2001, 25 (1): 36- 39
16 SAWADA M, SOSHI N, TETSUJI O New rapid evaluation for long-term behavior in deep geological repository by geotechnical centrifuge-part 2: numerical simulation of model tests in isothermal condition[J]. Rock Mechanics and Rock Engineering, 2017, 50 (1): 159- 169
doi: 10.1007/s00603-016-1061-6
17 郑传祥, 蒋建群, 林伟岸, 等. 一种真空环境下土工离心机空气摩擦产热量测试装置: CN201820875384.5[P]. 2019-02-15.
18 DONG-SOO K, NAM-RYONG K, CHOO Y W, et al A newly developed slate of the art geotechnical centrifuge in Korea[J]. Journal of Civil Engineering, 2013, 17 (1): 77- 84
19 杜延龄 大型土工离心机基本设计原则[J]. 岩土工程学报, 1993, 15 (6): 10- 17
DU Yan-ling Fundamental design principles of large geotechnical centrifuge[J]. Chinese Journal of Geotechnical Engineering, 1993, 15 (6): 10- 17
doi: 10.3321/j.issn:1000-4548.1993.06.002
20 孙悦, 袁晓铭, 王永志, 等 NEES系统中振动离心机最新进展及国内振动离心机发展设想[J]. 世界地震工程, 2010, 26 (1): 31- 39
SUN Yue, YUAN Xiao-ming, WANG Yong-zhi, et al Lastest progress of centrifugal shakers in NEES and developmental conception of domestic centrifugal shakers[J]. World Earthquake Engineering, 2010, 26 (1): 31- 39
21 郝雨, 尹益辉, 万强, 等 土工离心机风阻计算方法的对比研究[J]. 环境装备工程, 2018, 15 (3): 61- 66
HAO Yu, YIN Yi-hui, WAN Qiang, et al Comparative study on estimation methods of wind resistance of geotechnical centrifuges[J]. Equipment Environmental Engineering, 2018, 15 (3): 61- 66
22 尹益辉, 余绍蓉, 冯晓军, 等 密闭机室型土工离心机的风阻功率[J]. 绵阳师范学院学报, 2010, 29 (2): 1- 5
YIN Yi-hui, YU Shao-rong, FENG Xiao-jun, et al Aerodynamic power of geotechnical centrifuge with closed chamber[J]. Journal of Mianyang Normal University, 2010, 29 (2): 1- 5
doi: 10.3969/j.issn.1672-612X.2010.02.001
23 尹益辉, 刘远东, 王兴伦, 等 旋臂式离心机负载转矩及其驱动电机额定功率的计算方法[J]. 机电工程, 2011, 28 (6): 659- 662
YIN Yi-hui, LIU Yuan-dong, WANG Xin-lun, et al Calculations of load rotational moment and rating power of centrifuges with rotation arms[J]. Journal of Mechanical and Electrical Engineering, 2011, 28 (6): 659- 662
doi: 10.3969/j.issn.1001-4551.2011.06.005
24 郑传祥, 魏双, 何建龙, 等. 气-液换热器传热系数测定装置: CN201510433423.7[P]. 2015-11-25.
[1] 于梦婷,汪怡平,苏楚奇,陶琦,史建鹏. 尾随半挂车队列行进的轿车燃油经济性研究[J]. 浙江大学学报(工学版), 2021, 55(3): 455-461.
[2] 潘晓东,周廉默,孙宏磊,蔡袁强,史吏,袁宗浩. 基于粒子图像测速的高含水率软土真空预压试验[J]. 浙江大学学报(工学版), 2020, 54(6): 1078-1085.
[3] 闵小滕,唐志国,高钦,宋安琪,王守成. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469.
[4] 武亚军, 顾赛帅, 强小兵, 黄伟钧, 卢立海, 骆嘉成. 基于骨架构建药剂真空预压法加固超软土试验[J]. 浙江大学学报(工学版), 2018, 52(4): 735-743.
[5] 李小华,包伟伟,王静,李慧霞,蔡忆昔. 基于电流体动力学的LED前照灯散热[J]. 浙江大学学报(工学版), 2016, 50(7): 1284-1289.
[6] 王涛, 王亮, 林贵平, 柏立战, 刘向阳, 卜雪琴, 谢广辉. TiO2纳米流体在液冷服上的应用实验研究[J]. 浙江大学学报(工学版), 2016, 50(4): 681-690.
[7] 鲍树峰,董志良,娄炎,莫海鸿,陈平山,周红星,罗彦. 高黏粒含量新近吹填淤泥加固新技术室内研发Ⅱ[J]. 浙江大学学报(工学版), 2015, 49(9): 1707-1715.
[8] 张仪萍, 李剑.  真空预压排水机制室内模型试验研究[J]. 浙江大学学报(工学版), 2014, 48(4): 679-685.
[9] 肖玉麒,范利武,洪荣华,徐旭,俞自涛,胡亚才. 纳米填料对储能式散热器性能影响的数值研究[J]. J4, 2013, 47(9): 1644-1649.
[10] 周俊虎,汪洋,杨卫娟,刘建忠,王智化,岑可法. 不同外部风温对微尺度火焰的影响[J]. J4, 2011, 45(1): 146-150.
[11] 黄钰期 俞小莉 陆国栋. 锯齿型翅片单元的流动与传热数值模拟[J]. J4, 2008, 42(8): 1462-1468.
[12] 王奎华 陈再谦 张智卿. 真空负压静力试桩方法有限元分析[J]. J4, 2008, 42(1): 88-93.
[13] 孙志坚 王立新 王岩 吴存真 岑可法. 重力型热管散热器传热特性的实验研究[J]. J4, 2007, 41(8): 1403-1405.
[14] 朱斌 陈若曦 陈云敏 詹良通. 分层真空预压软土地基一维大变形固结模型及试验研究[J]. J4, 2007, 41(11): 1927-1931.
[15] 张毅 俞小莉 陆国栋 赵骆伟 黄旭就 廖时平. 装载机散热系统过热现象的研究[J]. J4, 2006, 40(7): 1183-1186.