Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (4): 817-827    DOI: 10.3785/j.issn.1008-973X.2024.04.017
土木工程     
斜拉桥钢塔地震损伤特性及输入地震动参数的影响
郏洲(),谢旭*(),王天佳,成程
1. 浙江大学 建筑工程学院,浙江 杭州 310058
Seismic damage characteristics of steel tower of cable-stayed bridge and influence of input ground motion parameters
Zhou JIA(),Xu XIE*(),Tianjia WANG,Cheng CHENG
1. College of Civil Engineering and Architecture, Zhejiang University, Hangzhou 310058, China
 全文: PDF(5212 KB)   HTML
摘要:

以主跨为165 m的独塔钢斜拉桥为研究对象,建立精细化钢塔计算模型. 选取经峰值加速度调整后的历史地震记录作为地震动输入,分析顺桥向弹塑性时程反应,研究钢塔的钢板局部失稳以及超低周疲劳开裂特性,讨论纤维模型的适用性. 结果表明,沿高度方向加载的Pushover法能够预测钢塔顺桥向地震塑性发展的顺序和位置;纤维模型能够获得钢塔的弹塑性地震位移反应以及地震损伤位置,不能精确评价结构残余变形与损伤程度;输入地震动的峰值地面速度(PGV)/峰值地面加速度(PGA)值是影响结构地震损伤程度的指标;当PGA相同时,PGV/PGA值越大的地震动引起的钢塔地震损伤越显著,钢塔斜拉桥抗震性能验算应选用PGV/PGA值大的地震动时程.

关键词: 钢塔地震损伤近断层地震动钢板局部失稳超低周疲劳损伤    
Abstract:

Taking a single-tower steel cable-stayed bridge with a main span of 165 m as a research object, a refined calculation model of the steel tower was established. The historical seismic records adjusted by peak acceleration were selected as the ground motion input for the elasto plastic time-history analysis in the longitudinal direction of the bridge. The local instability of the steel plates and ultra-low cycle fatigue cracking characteristics of the steel tower were studied, and the applicability of the fiber model was discussed. Results show that the Pushover analysis method loaded along the height can predict the sequence and location of the seismic plastic development in the longitudinal direction of the steel tower. Although the fiber model can obtain the elastic-plastic seismic displacement response and the seismic damage location of the steel tower, it cannot accurately evaluate the residual deformation and the damage degree of the structure. The peak ground velocity (PGV)/peak ground acceleration (PGA) value of the input ground motion is an indicator that affects the degree of structural seismic damage. Under the same PGA, the seismic damage of the steel tower caused by ground motions with larger PGV/PGA values is significant. Therefore, the seismic performance verification of steel towers cable-stayed bridges should adopt the ground motion time history with larger PGV/PGA values.

Key words: steel tower    seismic damage    near-fault ground motions    local instability of steel plate    ultra-low cycle fatigue damage
收稿日期: 2023-04-08 出版日期: 2024-03-27
CLC:  U 448.27  
基金资助: 国家自然科学基金资助项目(52178174,51878606).
通讯作者: 谢旭     E-mail: 22112280@zju.edu.cn;xiexu@zju.edu.cn
作者简介: 郏洲(1999―),男,硕士生,从事桥梁抗震研究. org.orcid/0009-0002-2580-2432. E-mail:22112280@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
郏洲
谢旭
王天佳
成程

引用本文:

郏洲,谢旭,王天佳,成程. 斜拉桥钢塔地震损伤特性及输入地震动参数的影响[J]. 浙江大学学报(工学版), 2024, 58(4): 817-827.

Zhou JIA,Xu XIE,Tianjia WANG,Cheng CHENG. Seismic damage characteristics of steel tower of cable-stayed bridge and influence of input ground motion parameters. Journal of ZheJiang University (Engineering Science), 2024, 58(4): 817-827.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.04.017        https://www.zjujournals.com/eng/CN/Y2024/V58/I4/817

图 1  斜拉桥概况
mm
截面号δAδBbR-A×δR-AbR-B×δR-B
SEC13232230×22230×22
SEC22825230×22200×19
SEC32525200×19200×19
SEC42222200×19200×19
表 1  主塔截面参数
钢板位置RRRF
I0.5290.529
II0.4950.701
III0.3430.329
IV0.5090.706
表 2  塔底截面钢板宽厚比
图 2  钢板位置
图 3  桥梁设计反应谱
图 4  桥梁计算模型
参数数值参数数值
σ0/MPa391.2ξ1245
Q/MPa21ξ2155
biso10ξ350
Ckin,i (i=1, 2, 3, 4)/MPa1 800ξ430
表 3  Q355钢材的Chaboche模型参数
图 5  桥梁主要振型
模态振型f/HzMeff/%
XYZ
1主梁一阶竖弯(面内)0.451011
2塔对称侧弯0.670140
3塔反对称侧弯0.74000
4主梁二阶竖弯(面内)0.852021
5主梁一阶扭转1.06000
6主梁一阶侧弯1.150310
7主梁三阶竖弯(面内)1.250031
8主梁纵飘(面内)1.578001
9主梁二阶扭转1.75000
10主梁四阶竖弯(面内)1.84106
表 4  桥梁自振特性
图 6  Pushover法加载模式
图 7  Pushover法的计算结果
图 8  输入地震动及反应谱
图 9  桥塔塑性区域分布
位置台站号λ/(°)ω/(°)
破裂前方TCU-036120.69624.449
破裂前方TCU-052120.73924.198
破裂区上盘TCU-084120.90023.883
破裂区下盘TCU-076120.67623.908
破裂后方TCU-109120.57124.085
破裂后方CHY-087120.51923.385
表 5  各台站地理位置
图 10  调整后的地震动反应谱
位置台站号G/km(PGV/PGA)/s
破裂前方TCU-036-EW19.830.429
破裂区上盘TCU-052-EW0.660.431
破裂区上盘TCU-084-EW8.200.130
破裂区下盘TCU-076-EW2.740.153
破裂区下盘TCU-109-EW13.060.383
破裂后方CHY-087-EW37.480.077
表 6  台站的断层距和地震动的PGV/PGA值
位置台站号dx/mμm
拉应变压应变
破裂前方TCU-0360.0774.43?3.90
破裂区上盘TCU-0520.08211.80?6.82
破裂区上盘TCU-0840.0004.58?4.12
破裂区下盘TCU-0760.0001.41?4.07
破裂区下盘TCU-1090.16510.66?10.68
破裂后方CHY-0870.0001.52?2.63
表 7  桥塔地震反应计算结果
图 11  塔底最大等效塑性应变位置的滞回曲线
地震名称断层类型台站号G/km(PGV/PGA)/s
Imperial Valley走滑断层EL-108.600.298
Northridge逆冲断层LV-337.330.077
表 8  台站的断层信息和地震动的PGV/PGA值[27]
台站号dx/mμmPEEQ
拉应变压应变
EL-100.1094.85?1.110.016
LV-30.0000.65?1.620.002
表 9  不同断层类型的桥塔地震反应计算结果
图 12  塔底等效塑性应变计算结果以及输出位置
图 13  超低周疲劳验算的子模型
参数数值参数数值参数数值
σ0/MPa428.5Ckin,1/MPa12752.3ξ2160
Q/MPa17.4ξ1160Ckin,3/MPa630.5
biso0.4Ckin,2/MPa1111.2ξ326
表 10  焊缝材料的Chaboche混合强化模型参数
图 14  地震作用下塔底的空穴成长指数履历
图 15  截面纤维条划分情况
模态f/HzMeff-X/%Meff-Z /%
板壳模型纤维模型板壳模型纤维模型板壳模型纤维模型
10.4450.437111111
40.8500.847212121
71.2541.248013131
81.5671.558807910
表 11  自振特性比较
台站位置台站号Dx/mdx/mμmPEEQ
拉应变压应变
破裂前方TCU-036-EW0.412(3.51%)0.069(10.39%)4.25(4.06%)?3.72(4.62%)0.087(8.42%)
破裂区上盘TCU-052-EW0.626(7.26%)0.062(24.39%)8.42(28.64%)?6.25(8.36%)0.061(15.28%)
破裂区上盘TCU-084-EW0.275(0.73%)0.000(0.00%)4.33(5.46%)?3.88(5.83%)0.098(10.09%)
破裂区下盘TCU-076-EW0.269(2.28%)0.000(0.00%)1.37(2.84%)?3.85(5.41%)0.031(6.45%)
破裂区下盘TCU-109-EW0.603(8.77%)0.118(28.48%)7.36(30.96%)?9.33(12.64%)0.183(21.46%)
破裂后方CHY-087-EW0.163(1.81%)0.000(0.00%)1.47(3.29%)?2.57(2.28%)0.024(5.30%)
表 12  纤维和板壳单元模型的桥塔地震反应计算结果比较
图 16  不同模型塔底最大等效塑性应变位置的滞回曲线
1 日本土木学会. 阪神淡路大震災における鋼構造物の震災の実態と分析[M]. 東京: 丸善, 1999.
2 宇佐美勉. 鋼橋の耐震·制震設計ガイドライン[M]. 東京: 丸善, 2006.
3 ZHUGE H, XIE X Hysteresis model for fiber elements in effective damaged zone of square-section steel piers considering local instability effect of steel plates[J]. Journal of Structural Engineering, 2020, 146 (8): 04020156
doi: 10.1061/(ASCE)ST.1943-541X.0002698
4 CHEN S, XIE X, ZHUGE H Hysteretic model for steel piers considering the local buckling of steel plates[J]. Engineering Structures, 2019, (183): 303- 318
5 刘乃藩, 高圣彬 带肋圆形截面钢桥墩的延性性能预测[J]. 哈尔滨工业大学学报, 2017, 49 (3): 138- 143
LIU Naifan, GAO Shengbin Ductility prediction of stiffened steel pipe-section bridge piers[J]. Journal of Harbin Institute of Technology, 2017, 49 (3): 138- 143
6 KANG L, GE H Predicting ductile crack initiation in steel bridge piers with unstiffened box section under specific cyclic loadings using detailed and simplified evaluation methods[J]. Advances in Structural Engineering, 2015, 18 (9): 1427- 1442
doi: 10.1260/1369-4332.18.9.1427
7 USAMI T, GAO S, GE H Stiffened steel box columns. Part 2: ductility evaluation[J]. Earthquake Engineering and Structural Dynamics, 2000, 29 (11): 1707- 1722
doi: 10.1002/1096-9845(200011)29:11<1707::AID-EQE990>3.0.CO;2-7
8 JENOTHAN M, JAYASINGHE J, BANDARA C Lateral behaviour and performance evaluation of steel piers under cyclic lateral loading[J]. Journal of Constructional Steel Research, 2023, 201: 107764
doi: 10.1016/j.jcsr.2022.107764
9 谢旭, 唐站站. 钢桥抗震设计[M]. 北京: 科学出版社, 2019.
10 RAHEEM S E A, HAYASHIKAWA T, DORKA U Ground motion spatial variation effects on seismic response control of cable-stayed bridges[J]. Earthquake Engineering and Engineering Vibration, 2011, 10: 37- 39
11 和崎宏一, 柳野和也, 廣住敦士, など 長大斜張橋の想定大規模地震時の非線形挙動に関する研究[J]. 構造工学論文集, 2007, 53A: 388- 397
WASAKI Kouichi, YANAGINO Kazuya, HIROZUMI Atsushi, et al Nonlinear seismic behaviors of a long-span cable-stayed bridge in major earthquakes[J]. Journal of Structural Engineering, 2007, 53A: 388- 397
12 OKAMOTO Y, NAKAMURA S Static and seismic studies on steel/concrete hybrid towers for multi-span cable-stayed bridges[J]. Journal of Constructional Steel Research, 2011, 67 (2): 203- 210
doi: 10.1016/j.jcsr.2010.08.008
13 谢旭, 唐站站, 胡欣科, 等 纤维模型在钢拱桥抗震设计中的适用性研究[J]. 中国公路学报, 2015, 28 (2): 33- 42
XIE Xu, TANG Zhanzhan, HU Xinke, et al Study on applicability of fiber model in seismic design for steel arch bridge[J]. China Journal of Highway and Transport, 2015, 28 (2): 33- 42
doi: 10.3969/j.issn.1001-7372.2015.02.005
14 张鸿. 千米级斜拉桥施工关键技术研究与实践[M]. 北京: 人民交通出版社, 2015.
15 朱家豪, 叶爱君, 韩大章, 等 钢塔斜拉桥地震反应特性分析[J]. 建筑钢结构进展, 2020, 22 (2): 36- 40
ZHU Jiahao, YE Aijun, HAN Dazhang, et al Seismic response analysis of steel-tower cable-stayed bridges[J]. Progress in Steel Building Structures, 2020, 22 (2): 36- 40
16 李帅, 王景全, 颜晓伟, 等 近断层地震动空间分布特征对斜拉桥地震响应影响[J]. 土木工程学报, 2016, 49 (6): 94- 104
LI Shuai, WANG Jingquan, YAN Xiaowei, et al Influence of spatial distribution characteristics of near-fault ground motion on seismic response of cable-stayed bridges[J]. China Civil Engineering Journal, 2016, 49 (6): 94- 104
17 LI S, ZHANG F, WANG J Q, et al Seismic responses of super-span cable-stayed bridges induced by ground motions in different sites relative to fault rupture considering soil-structure interaction[J]. Soil Dynamics and Earthquake Engineering, 2017, 101: 295- 310
doi: 10.1016/j.soildyn.2017.07.016
18 陈扬, 张铭, 王秋良, 等 近断层脉冲型地震动作用下大跨斜拉桥的地震响应特征分析[J]. 公路, 2022, 67 (1): 97- 104
CHEN Yang, ZHANG Ming, WANG Qiuliang, et al Analysis seismic response characteristics of cable stayed bridges under near-fault pulse ground motion[J]. Highway, 2022, 67 (1): 97- 104
19 辰巳正明. 鋼斜張橋-技術とその変遷[M]. 東京: 丸善, 2010: 231.
20 Japanese Road Association. Specifications for highway bridges part V: seismic design [S]. Tokyo: Maruzen, 2012.
21 王彤. 桥梁结构钢材滞回本构模型改进及其应用研究[D]. 杭州: 浙江大学, 2016.
WANG Tong. Improvement of the hysteretic constitutive model for bridge structural steels and its application [D]. Hangzhou: Zhejiang University, 2016.
22 CHABOCHE J L Time-independent constitutive theories for cyclic plasticity[J]. International Journal of Plasticity, 1986, 2 (2): 149- 188
doi: 10.1016/0749-6419(86)90010-0
23 CHEN W F, DUAN L. Bridge engineering handbook: seismic design [M]. Boca Raton: CRC Press, 2014.
24 黄蓓. 基于集集地震记录的近断层地震动特性分析[D]. 北京: 中国地震局地球物理研究所, 2003.
HUANG Bei. Study on near-field characteristics of strong ground motion during the Chi-Chi, Taiwan, earthquake [D]. Beijing: Institute of Geophysics, China Earthquake Administration, 2003.
25 罗全波, 陈学良, 高孟潭, 等 集集地震近断层速度脉冲分析[J]. 国际地震动态, 2019, (10): 2- 11
LUO Quanbo, CHEN Xueliang, GAO Mengtan, et al Analysis of near-fault velocity pulses in the Chi-Chi earthquake[J]. International Seismological Dynamics, 2019, (10): 2- 11
26 SHIN T C An overview of the 1999 ChiChi, Taiwan, earthquake[J]. Bulletin of the Seismological Society of America, 2001, 91 (5): 895- 913
27 李帅. 近断层地震动工程特性及其作用下大跨斜拉桥地震响应分析[D]. 南京: 东南大学, 2018.
LI Shuai. Characteristics of near fault ground motions and its influence on the seismic performance of long-span cable-stayed bridge [D]. Nanjing: Southeast University, 2018.
28 KANVINDE A, DEIERLEIN G Cyclic void growth model to assess ductile fracture initiation in structural steels due to ultra low cycle fatigue[J]. Journal of Engineering Mechanics, 2007, 133 (6): 701
doi: 10.1061/(ASCE)0733-9399(2007)133:6(701)
29 诸葛翰卿, 谢旭, 廖燕华, 等 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报: 工学版, 2019, 53 (4): 702- 712
ZHUGE Hanqing, XIE Xu, LIAO Yanhua, et al Effect of transverse earthquake action on development of seismic damage of steel arch bridges[J]. Journal of Zhejiang University: Engineering Science, 2019, 53 (4): 702- 712
30 廖燕华. 钢桥焊接节点超低周疲劳性能与断裂机理研究[D]. 杭州: 浙江大学, 2018.
LIAO Yanhua. Research on ultra low cycle fatigue performance and fracture mechanism of steel bridge welded joint [D]. Hangzhou: Zhejiang University, 2018.
[1] 诸葛翰卿,谢旭,廖燕华,唐站站. 横桥向地震作用对钢拱桥地震损伤发展的影响[J]. 浙江大学学报(工学版), 2019, 53(4): 702-712.
[2] 谢旭 布占宇. 应用碳纤维筋控制桥墩地震损伤方法初探[J]. J4, 2005, 39(10): 1589-1595.