Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (3): 635-645    DOI: 10.3785/j.issn.1008-973X.2024.03.020
机械工程     
基于无线倾角传感器的活动翼面偏转测试
张沛奇1(),刘博锋2,崔明琦1,胡铮2,王青1,*()
1. 浙江大学 机械工程学院,浙江省先进制造技术重点实验室,浙江 杭州 310027
2. 西安飞机工业(集团)有限责任公司,陕西 西安 710089
Measurement of movable wing surface deflection based on wireless inclination sensor
Peiqi ZHANG1(),Bofeng LIU2,Mingqi CUI1,Zheng HU2,Qing WANG1,*()
1. Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou 310027, China
2. Xi’an Aircraft Industrial (Group) Co. Ltd, Xi’an 710089, China
 全文: PDF(2704 KB)   HTML
摘要:

为了解决传统活动翼面偏转测试中传感器安装平行度要求高、线缆长、人工操作复杂繁琐等问题,提高空间角度测量准确性和现场测试效率,在分析倾角传感器底层测量原理的基础上,综合考虑飞机测试现场系统误差,参考已有的空间角度测量模型,对双测量轴空间旋转模型进行推导和改进. 得到适用于机翼活动翼面绕水平轴偏转情况下的空间角度测量误差模型,提出适用于活动翼面偏转测试需求的倾角传感器校准方法. 以该模型和校准方法为基础设计实现基于无线倾角传感器的大型飞机活动翼面偏转测试系统. 实验平台旋转角度精度测试和活动翼面现场测试的结果表明,相对于现有方法,该校准方法能够获得更大有效测量量程以满足实际工况需求,提升角度校准精度,并显著提升测试效率.

关键词: 活动翼面角度测量倾角传感器校准算法偏转测试    
Abstract:

The dual measurement axis spatial rotation model was deduced and improved, by referring to the existing spatial angle measurement models and considering the system error of the aircraft testing site, based on the analysis of the underlying measurement principle of the inclination sensor. The purpose was to resolve the problems during the movable wing surface deflection test, such as high installation parallelism requirement, long cables and complex manual operations, so as to improve the measurement accuracy and the test efficiency. A spatial angle measurement error model around the horizontal axis and a calibration method for inclination sensor were proposed, to meet the requirement for the deflection testing. A large aircraft movable wing surface deflection testing system based on wireless inclination sensors was designed and implemented, capitalizing on this model and the calibration method. Results of the rotation angle accuracy testing on the experimental platform and the on-site testing on the movable wing surface show that, compared with the existing methods, the proposed calibration method can obtain a larger effective measurement range to meet the actual working conditions, improve the angle calibration accuracy, and significantly improve the testing efficiency.

Key words: movable wing surface    angle measurement    inclination sensor    calibration algorithm    deflection test
收稿日期: 2023-03-30 出版日期: 2024-03-05
CLC:  V 262.4  
基金资助: 国家重点研发计划资助项目(2019YFB1707504).
通讯作者: 王青     E-mail: 22125032@zju.edu.cn;wqing@zju.edu.cn
作者简介: 张沛奇(1999—),男,硕士生,从事飞机装配研究. orcid.org/0009-0003-1838-6693. E-mail:22125032@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
张沛奇
刘博锋
崔明琦
胡铮
王青

引用本文:

张沛奇,刘博锋,崔明琦,胡铮,王青. 基于无线倾角传感器的活动翼面偏转测试[J]. 浙江大学学报(工学版), 2024, 58(3): 635-645.

Peiqi ZHANG,Bofeng LIU,Mingqi CUI,Zheng HU,Qing WANG. Measurement of movable wing surface deflection based on wireless inclination sensor. Journal of ZheJiang University (Engineering Science), 2024, 58(3): 635-645.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.03.020        https://www.zjujournals.com/eng/CN/Y2024/V58/I3/635

图 1  微惯性测量系统
图 2  基于电容原理的重力加速度敏感器件示意图
图 3  微加速度计测量三轴倾角
图 4  单轴倾角传感器空间测量模型
图 5  双轴传感器水平测量轴示意图
图 6  无安装误差状态下双轴测量原理示意图
图 7  双轴倾角测量模型
图 8  无误差情形下双轴倾角测量坐标求解过程示意图
图 9  存在双轴误差的倾角测量
图 10  双轴无误差模型与有误差模型之间的关系
图 11  实际的双轴测量误差示意图
图 12  改进的双轴测量误差模型示意图
图 13  基于无线倾角传感器的活动翼面测试系统整体架构图
图 14  活动翼面偏转测试物理系统及无线组网图
图 15  活动翼面偏转测试系统软件功能框架图
图 16  软件主界面图
$\beta $${Y_0}$${Y_1}$${E_0}$${E_1}$
00.390.000.390.00
3030.3430.000.340.00
6060.2059.990.20?0.01
00.390.000.390.00
?30?29.66?29.990.340.01
?60?59.77?59.960.230.04
表 2  中框角度30°时传感器测量轴校准前后角度数据
图 17  三轴独立控制的精密转台及传感器胶黏安装图
图 18  校准实验现场
$\beta $${Y_0}$${Y_1}$${E_0}$${E_1}$
00.000.000.000.00
3030.0130.010.01
6059.9859.98?0.02
00.000.000.000.00
?30?29.99?29.990.01
?60?59.95?59.950.05
表 1  中框角度0°时传感器测量轴校准前后角度数据
$\beta $${Y_0}$${Y_1}$${E_0}$${E_1}$
01.130.001.130.00
2021.0719.991.07?0.01
4545.8744.990.87?0.01
6060.5759.990.57?0.01
01.120.001.120.00
?20?18.95?19.991.050.01
?45?44.20?44.960.800.04
?60?59.42?59.940.580.06
表 3  中框角度60°时传感器测量轴校准前后角度数据
图 19  活动翼面偏转测试系统实物图
时间X/(°)Y/(°)U/VS/dBm
17:02:31?1.18?1.443.7?27
17:02:31?1.21?1.443.7?27
17:02:31?1.19?1.443.7?27
17:02:31?1.19?1.453.7?27
17:02:31?1.20?1.453.7?27
17:02:31?1.17?1.443.7?27
17:02:31?1.22?1.443.7?27
17:02:31?1.19?1.453.7?27
17:02:31?1.18?1.433.7?27
17:02:31?1.21?1.443.7?27
17:02:32?1.21?1.443.7?27
17:02:32?1.18?1.453.7?27
17:02:32?1.21?1.453.7?27
17:02:32?1.16?1.433.7?27
17:02:32?1.21?1.453.7?27
17:02:32?1.19?1.433.7?27
17:02:32?1.18?1.443.7?27
17:02:32?1.20?1.453.7?27
17:02:32?1.20?1.443.7?27
17:02:32?1.19?1.443.7?27
17:02:33?1.19?1.453.7?27
17:02:33?1.19?1.453.7?27
17:02:33?1.20?1.453.7?27
17:02:33?1.19?1.443.7?27
17:02:33?1.19?1.453.7?27
17:02:33?1.20?1.443.7?27
17:02:33?1.20?1.443.7?27
17:02:33?1.19?1.453.7?27
17:02:33?1.20?1.453.7?27
17:02:33?1.18?1.443.7?27
表 4  活动翼面偏转测试部分结果表
1 范玉青 波音787飞机总装配线及其特点[J]. 航空制造技术, 2011, (Suppl. 2): 38- 42
FAN Yuqing Boeing 787 final assembly line and its characteristics[J]. Aeronautical Manufacturing Technology, 2011, (Suppl. 2): 38- 42
2 曹建安, 徐海虹, 吴昊, 等 飞机总装站位式生产线的综合测试技术研究[J]. 测控技术, 2017, 36 (2): 15- 19
CAO Jianan, XU Haihong, WU Hao, et al Research on integrative testing of movable stations final assembly line of airplanes[J]. Measurement and Control Technology, 2017, 36 (2): 15- 19
3 宋利康, 郑堂介, 朱永国, 等 飞机脉动总装智能生产线构建技术[J]. 航空制造技术, 2018, (1): 28- 32
SONG Likang, ZHENG Tangjie, ZHU Yongguo, et al Construction technologies of intelligent pulse production line for aircraft final assembly[J]. Aeronautical Manufacturing Technology, 2018, (1): 28- 32
4 胡铮. 大型机翼活动翼面安装调试技术研究[D]. 哈尔滨: 哈尔滨工业大学, 2019.
HU Zheng. Study on installation and debugging technology of large wing moving surface [D]. Harbin: Harbin Institute of Technology, 2019.
5 XIAO W J, CHEN Z B, MA D X, et al Large-scale spatial angle measurement and the pointing error analysis[J]. Optoelectronics Letters, 2016, 12 (3): 229- 232
doi: 10.1007/s11801-016-6028-z
6 彭希锋, 陈爽, 李海星, 等 基于激光位移传感器的面角度测量技术研究[J]. 仪器仪表学报, 2017, 38 (11): 2735- 2743
PENG Xifeng, CHEN Shuang, LI Haixing, et al Study on the plane angle measurement technology based on laser displacement sensors[J]. Chinese Journal of Scientific Instrument, 2017, 38 (11): 2735- 2743
7 牟成铭, 叶丁绮, 罗川 基于双目视觉的飞机活动翼面偏角测量研究[J]. 测控技术, 2020, 39 (8): 123- 128
MOU Chengming, YE Dingqi, LUO Chuan Deflection angle measurement of aircraft rudder based on binocular vision[J]. Measurement and Control Technology, 2020, 39 (8): 123- 128
8 CUYPERS W, VAN Gestel N, VOET A, et al Optical measurement techniques for mobile and large-scale dimensional metrology[J]. Optics and Lasers in Engineering, 2009, 47 (3/4): 292- 300
9 叶声华, 邾继贵, 张滋黎, 等 大空间坐标尺寸测量研究的现状与发展[J]. 计量学报, 2008, 29 (Supp1.1): 1- 6
YE Shenghua, ZHU Jigui, ZHANG Zili, et al Status and development of large-scale coordinate measurement research[J]. Acta Metrologica Sinica, 2008, 29 (Supp1.1): 1- 6
10 佀明华, 王伟明, 张勇, 等 基于光电伺服平台的动态角度测量方法研究[J]. 光电工程, 2019, 46 (10): 12- 18
SI Minghua, WANG Weiming, ZAHNG Yong, et al Research on dynamic angle measurement method based on electro-optical servo platform[J]. Opto-Electronic Engineering, 2019, 46 (10): 12- 18
11 WU B, WANG B Automatic measurement in large-scale space with the laser theodolite and vision guiding technology[J]. Advances in Mechanical Engineering, 2013, (1): 533- 542
12 张应猛. 一种飞机活动翼面偏转角度测量装置: CN106767647A [P]. 2017−05−31.
13 郑博, 谢云, 后柏宇, 等. 一种飞机活动翼面偏转角度测量方法: CN112729221A [P]. 2021−04−30.
14 WANG S, WEI X, WENG Y, et al A novel single-axis mems tilt sensor with a high sensitivity in the measurement range from 0° to 360°[J]. Sensors, 2018, 18 (2): 346- 358
doi: 10.3390/s18020346
15 ZHU J X, WANG W F, HUANG S P, et al An improved calibration technique for mems accelerometer-based inclinometers[J]. Sensors, 2020, 20 (2): 452- 474
doi: 10.3390/s20020452
16 曹建安, 张乐平, 吴昊, 等 采用倾角传感器实现空间旋转角度测量的解析方法研究[J]. 西安交通大学学报, 2013, 47 (10): 109- 114
CAO Jianan, ZHANG Leping, WU Hao, et al Analytical approach for measurement of spatial angle with inclination sensor[J]. Journal of Xi’an Jiaotong University, 2013, 47 (10): 109- 114
doi: 10.7652/xjtuxb201310019
17 CUI S W, CUI L G, DU Y D, et al. Calibration of MEMS accelerometer using kaiser filter and the ellipsoid fitting method [C]// Proceedings of the 37th Chinese Control Conference . Wuhan: [s.n.], 2018: 1243−1248.
18 张起朋, 李醒飞, 谭文斌, 等. 双轴倾角传感器姿态角测量的建模与标定[J]. 机械科学与技术, 2016, 35(7): 1096−1101.
ZHANG Qipeng, LI Xingfei, TAN Wenbin, et al. Modeling and calibration of dual-axis tilt sensor for measuring attitude angles[J]. Mechanical Science and Technology for Aerospace Engineering . 2016, 35(7): 1096−1101.
[1] 蒋君侠,董琛,边晨,董辉跃. 卧式双机联合自动钻铆系统综合刚度研究[J]. 浙江大学学报(工学版), 2019, 53(6): 1110-1118.
[2] 俞慈君, 宋凯, 李江雄, 金涨军, 樊新田, 章明. 基于LevenbergMarquardt算法的线性热变形补偿系数矩阵优化[J]. 浙江大学学报(工学版), 2016, 50(6): 1056-1064.
[3] 陈威, 朱伟东, 章明, 赵健冬, 梅标. 叠层结构机器人制孔压紧力预测[J]. 浙江大学学报(工学版), 2015, 49(12): 2282-2289.
[4] 郭志敏,蒋君侠,柯映林. 基于定位器的飞机大部件调姿系统静刚度[J]. J4, 2010, 44(11): 2077-2082.
[5] 蒋君侠, 范子春, 郭志敏, 柯映林. 适用于三段大部件对接的柔性装配平台设计与优化[J]. J4, 2010, 44(9): 1798-1804.
[6] 郭志敏, 蒋君侠, 柯映林. 基于三坐标定位器支撑的飞机大部件调姿内力[J]. J4, 2010, 44(8): 1508-1513.
[7] 张斌, 姚宝国, 柯映林. 基于鞍点规划理论的机翼水平位姿评估方法[J]. J4, 2009, 43(10): 1761-11765.