Please wait a minute...
浙江大学学报(工学版)  2024, Vol. 58 Issue (1): 207-218    DOI: 10.3785/j.issn.1008-973X.2024.01.022
机械工程、电气工程     
基于磁热耦合法的非对称混合磁极永磁电机热分析
史立伟(),刘政委,乔志伟,赵新,朱英杰
山东理工大学 交通与车辆工程学院,山东 淄博 255000
Thermal analysis of asymmetric hybrid pole permanent magnet motor based on magneto-thermal coupling method
Liwei SHI(),Zhengwei LIU,Zhiwei QIAO,Xin ZHAO,Yingjie ZHU
School of Transportation and Vehicle Engineering, Shandong University of Technology, Zibo 255000, China
 全文: PDF(2989 KB)   HTML
摘要:

针对传统内置永磁电机损耗高、发热量大的问题,提出非对称混合磁极永磁电机拓扑结构. 介绍非对称混合磁极永磁电机的拓扑结构,对比分析两者的电磁特性与损耗分布特性. 针对非对称混合磁极永磁电机分布式绕组的结构特点,对绕组进行等效处理,确定等效导热系数,建立集中参数热网络模型. 建立单向磁热耦合模型,计算电机各部件的温度分布,验证了热网络模型的正确性. 考虑到温度对永磁材料的影响,建立双向磁热耦合模型,对比分析不同电流密度对电机温升的影响规律. 试制一台样机并搭建温升试验平台进行温升试验,验证了新型拓扑结构的有效性与合理性以及磁热双向耦合法计算结果的准确性.

关键词: 永磁电机非对称混合磁极热分析磁热耦合集中参数热模型    
Abstract:

A topology of asymmetric hybrid pole permanent magnet motor (AHPPMM) was proposed for the problem of high loss and high heat generation of conventional interior permanent magnet motor. The topology of the asymmetric hybrid pole permanent magnet motor was introduced. The electromagnetic characteristics and loss distribution characteristics of the two were compared and analyzed. The equivalent thermal conductivity was determined based on the features of the distributed winding structure of the AHPPMM, and the lumped parameter thermal model was constructed. Then a unidirectional magneto-thermal coupling model was established to calculate the temperature distribution of each motor component and verify the correctness of the thermal network model. A bi-directional magneto-thermal coupling model was established by considering the temperature influence on the permanent magnet material in order to compare and analyze the influence law of different current densities on the motor temperature rise. A prototype was fabricated and a temperature rise experiment platform was constructed. The effectiveness and rationality of the new topology were verified. The accuracy of the calculation results of the bi-directional magneto-thermal coupling method was validated.

Key words: permanent magnet motor    asymmetric hybrid pole    thermal analysis    magneto-thermal coupling    lumped parameter thermal model
收稿日期: 2023-07-03 出版日期: 2023-11-07
CLC:  TM 351  
基金资助: 国家自然科学基金资助项目(51905066)
作者简介: 史立伟(1980—),男,教授,博导,从事电动汽车电机及控制的研究. orcid.org/0000-0001-9294-7143. E-mail: shiliwei@sdut.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
史立伟
刘政委
乔志伟
赵新
朱英杰

引用本文:

史立伟,刘政委,乔志伟,赵新,朱英杰. 基于磁热耦合法的非对称混合磁极永磁电机热分析[J]. 浙江大学学报(工学版), 2024, 58(1): 207-218.

Liwei SHI,Zhengwei LIU,Zhiwei QIAO,Xin ZHAO,Yingjie ZHU. Thermal analysis of asymmetric hybrid pole permanent magnet motor based on magneto-thermal coupling method. Journal of ZheJiang University (Engineering Science), 2024, 58(1): 207-218.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2024.01.022        https://www.zjujournals.com/eng/CN/Y2024/V58/I1/207

图 1  非对称混合磁极永磁电机及传统内置式永磁电机的转子拓扑结构
图 2  非对称混合磁极永磁电机及传统内置式永磁电机的简化磁路对比图
图 3  非均匀气隙转子的结构
参数 参数值
AHPPMM CIPMM
定子槽数 48 48
转子极数 8 8
定子外径/mm 159 159
定子内径/mm 107.4 107.4
气隙长度/mm 0.7/1.31 0.7
轴向长度/mm 91 91
转子外径/mm 106 106
永磁体用量/mm3 6.18×104 7.65×104
表 1  电机的主要几何参数
图 4  非对称混合磁极永磁电机及传统内置式永磁电机的磁场分布
图 5  气隙磁通密度的波形
图 6  空载反电势的波形
图 7  气隙磁通密度的谐波分析
图 8  空载反电势的谐波分析
图 9  涡流损耗的对比
图 10  铁芯损耗的对比
图 11  总损耗的对比
图 12  非对称混合磁极永磁电机的集中参数热网络模型
材料 λ/ (W·m?1·K?1) c /(J·kg?1·K?1) ρ/ (kg·m?3)
硅钢 40 426 7700
387 383.1 8954
N35UH 7.6 4600 7500
槽绝缘纸 0.2 1290 1060
表 2  非对称混合磁极永磁电机的材料参数
图 13  非对称混合磁极永磁电机绕组的示意图及等效模型
部件 节点温升/℃
电机外壳 45.4 45.1 47.9 47.7 47.5
定子轭部 56.3 56.4 56.3
电枢绕组 60.3 60.5 61.8 60.5 60.5
定子齿部 56.2 57.4 56.8
转子极靴 45.3 45.5 45.3
永磁体 46.1 46.4 46.3 46.2
转子轭部 45.1 45.5 45.3
端盖 42.8 44.6
轴承 47.9 51.2
表 3  非对称混合磁极永磁电机额定运行状态下的各部件温升计算结果
图 14  非对称混合磁极永磁电机的三维图
图 15  利用单向磁热耦合法计算得到的绕组、永磁体温度分布
图 16  利用单向磁热耦合法计算得到的定子、转子温度分布
图 17  双向磁热耦合的流程图
图 18  利用双向磁热耦合法计算得到的绕组、永磁体温度分布
图 19  利用双向磁热耦合法计算得到的定子、转子温度分布
图 20  单向磁热耦合法和双向磁热耦合法的输出转矩比较
J/(A·mm?2) tcmax/℃ tcavg/℃ tnmax/℃ tnavg/℃ trmax/℃ travg/℃ tsmax/℃ tsavg/℃
2.14 66.35 60.64 47.31 43.53 49.56 43.58 59.47 55.78
2.25 69.44 63.14 48.94 44.92 51.33 44.97 61.94 57.96
2.31 72.70 65.75 50.65 46.37 53.19 46.43 64.51 60.24
2.40 76.22 68.56 52.48 47.93 55.19 47.99 67.28 62.70
2.48 79.91 71.52 54.42 49.58 57.29 49.64 70.19 65.29
2.57 83.78 74.63 56.45 51.31 59.50 51.38 73.25 68.01
2.65 87.97 77.96 58.63 53.16 61.87 53.23 76.53 70.92
2.73 92.35 81.46 60.93 55.11 64.37 55.19 79.99 73.99
2.82 97.01 85.19 63.36 57.19 67.02 57.27 83.66 77.25
2.91 101.90 89.11 65.93 59.37 69.80 59.45 87.51 80.68
3.04 109.79 95.40 70.04 62.87 74.28 62.96 93.71 86.18
表 4  不同电流密度下利用磁热双向耦合法计算得到的非对称混合磁极永磁电机各部件温升结果
图 21  不同电流密度下非对称混合磁极永磁电机的最高温升
图 22  样机及温升实验平台
图 23  稳态温度云图
图 24  电机的最高温升曲线
图 25  空载反电势的实验平台
图 26  实测空载反电势的波形
图 27  空载反电势波形THD
1 LIU Xiangdong, CHEN Hao, ZHAO Jing, et al Research on the performances and parameters of interior PMSM used for electric vehicles[J]. IEEE Transactions on Industrial Electronics, 2016, 63 (6): 3533- 3545
doi: 10.1109/TIE.2016.2524415
2 寇宝泉, 赵晓坤, 张浩泉, 等 永磁同步电机电磁结构及磁场调节技术的综述分析[J]. 中国电机工程学报, 2021, 41 (20): 7126- 7141
KOU Baoquan, ZHAO Xiaokun, ZHANG Haoquan, et al Review and analysis of electromagnetic structure and magnetic field regulation technology of the permanent magnet synchronous motor[J]. Proceedings of the CSEE, 2021, 41 (20): 7126- 7141
doi: 10.13334/J.0258-8013.PCSEE.202259
3 LV Bingchang, SHI Liwei, LI Lintao Performance analysis of asymmetrical less-rare-earth permanent magnet motor for electric vehicle[J]. IET Electrical Systems in Transportation, 2021, 12 (1): 36- 48
4 LI Xiang, KAN Chaohao, REN Taian, et al Thermal network modeling and thermal stress evaluation for a high-power linear ultrasonic motor[J]. IEEE Transactions on Industry Applications, 2022, 58 (6): 7181- 7191
doi: 10.1109/TIA.2022.3197681
5 林明耀, 乐伟, 林克曼, 等 轴向永磁电机热设计及其研究发展综述[J]. 中国电机工程学报, 2021, 41 (6): 1914- 1929
LIN Mingyao, LE Wei, LIN Keman, et al Overview on research and development of thermal design methods of axial flux permanent magnet machines[J]. Proceedings of the CSEE, 2021, 41 (6): 1914- 1929
6 QI Ji, HUA Wei, ZHANG Hengliang Thermal analysis of modular-spoke-type permanent-magnet machines based on thermal network and FEA method[J]. IEEE Transactions on Magnetics, 2019, 55 (7): 1- 5
7 ZHANG Jian, ZHANG Zhuoran, XIA Yiwen, et al Thermal analysis and management for doubly salient brushless DC generator with flat wire winding[J]. IEEE Transactions on Energy Conversion, 2020, 35 (2): 1110- 1119
doi: 10.1109/TEC.2020.2966046
8 ZHANG Jian, ZHANG Zhuoran, LI Yu Thermal deformation analysis of water cooling doubly salient brushless DC generator with stator field winding[J]. IEEE Transactions on Industrial Electronics, 2019, 67 (4): 2700- 2710
9 LIANG Dawei, ZHU Ziqiang, ZHANG Yafeng, et al A hybrid lumped-parameter and two-dimensional analytical thermal model for electrical machines[J]. IEEE Transactions on Industry Applications, 2021, 57 (1): 246- 258
doi: 10.1109/TIA.2020.3029997
10 史立伟, 韩震, 周晓宇, 等 短磁路E型定子铁心电励磁双凸极发电机电磁特性分析[J]. 电机与控制学报, 2020, 24 (10): 109- 119
SHI Liwei, HAN Zhen, ZHOU Xiaoyu, et al Electromagnetic characteristics analysis of E-core stator doubly salient electro-magnetic generator with short circuit[J]. Electric Machines and Control, 2020, 24 (10): 109- 119
doi: 10.15938/j.emc.2020.10.012
11 韩雪岩, 祁坤, 段庆亮 起重机用外转子PMSM全域三维瞬态温度场数值计算与分析[J]. 电机与控制学报, 2015, 19 (5): 44- 52
HAN Xueyan, QI Kun, DUAN Qingliang Numerical calculation and analysis of 3D transient temperature field in the exterior-rotor PMSM for crane[J]. Electric Machines and Control, 2015, 19 (5): 44- 52
doi: 10.15938/j.emc.2015.05.007
12 宋守许, 胡孟成, 杜毅, 等 混合定子铁心再制造电机三维温度场分析[J]. 电机与控制学报, 2020, 24 (6): 33- 42
SONG Shouxu, HU Mengcheng, DU Yi, et al Temperature field investigation of remanufacturing motor with mixed stator core[J]. Electric Machines and Control, 2020, 24 (6): 33- 42
doi: 10.15938/j.emc.2020.06.005
13 SHI Yanwen, WANG Jiabin, WANG Bo Transient 3-D lumped parameter and 3-D FE thermal models of a PMASynRM under fault conditions with asymmetric temperature distribution[J]. IEEE Transactions on Industrial Electronics, 2021, 68 (6): 4623- 4633
doi: 10.1109/TIE.2020.2988224
14 丁树业, 江欣, 朱敏, 等 基于集总参数热网络法的永磁同步电机启动及稳态温升分析[J]. 电机与控制学报, 2020, 24 (5): 143- 150
DING Shuye, JIANG Xin, ZHU Min, et al Starting and steady temperature rise investigation for permanent magnet synchronous motor based on lumped-parameter thermal-network[J]. Electric Machines and Control, 2020, 24 (5): 143- 150
15 吴胜男, 郝大全, 佟文明 基于等效热网络法和CFD法高速永磁同步电机热计算研究[J]. 电机与控制学报, 2022, 26 (7): 29- 36
WU Shengnan, HAO Daquan, TONG Wenming Thermal calculation of high speed permanent magnet synchronous motor based on equivalent thermal network and CFD method[J]. Electric Machines and Control, 2022, 26 (7): 29- 36
16 王晓远, 高鹏 等效热网络法和有限元法在轮毂电机温度场计算中的应用[J]. 电工技术学报, 2016, 31 (16): 26- 33
WANG Xiaoyuan, GAO Peng Application of equivalent thermal network method and finite element method in temperature calculation of in-wheel motor[J]. Transactions of China Electrotechnical Society, 2016, 31 (16): 26- 33
doi: 10.3969/j.issn.1000-6753.2016.16.004
17 HWANG S W, RYU J Y, CHIN J W, et al Coupled electromagnetic-thermal analysis for predicting traction motor characteristics according to electric vehicle driving cycle[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (5): 4262- 4272
doi: 10.1109/TVT.2021.3071943
[1] 陈玲红,陈祥,吴建,武燕燕,周昊,邱坤赞,岑可法. 基于热重红外质谱联用技术定量分析燃煤气体产物[J]. 浙江大学学报(工学版), 2016, 50(5): 961-969.
[2] 徐秀琴, 莫炯炯, 王志宇, 尚永衡, 郭丽丽, 郁发新. 芯片级PHEMT热特性等效方法[J]. 浙江大学学报(工学版), 2016, 50(10): 2002-2008.
[3] 张晗妮, 张琪, 黄苏融, 张舟云. 计及轴承传热的高密度永磁电机温升计算[J]. 浙江大学学报(工学版), 2015, 49(12): 2410-2417.
[4] 王保俊, 毕刘新, 陈亮亮, 杨平西, 祝长生. 碳纤维绑扎表贴式高速永磁电机转子强度分析[J]. J4, 2013, 47(12): 2101-2110.
[5] 周华,张彦威,李和平,汪洋,刘建忠,周俊虎,岑可法. 不同气氛下含硼燃料热氧化特性及动力学分析[J]. J4, 2013, 47(11): 1987-1991.
[6] 安跃军,安辉,李勇,孙丹,赵文强. 面装极宽调制式永磁电机齿槽转矩研究[J]. J4, 2012, 46(9): 1708-1714.
[7] 张凤阁,陈进华,刘光伟,李晋. 定子紧固件对异向旋转双转子永磁电机的影响[J]. J4, 2011, 45(5): 804-808.
[8] 崔巍,龚宇,江建中,章跃进,杜世勤. 双凸极永磁电机的对称化设计[J]. J4, 2011, 45(5): 825-830.
[9] 田占元, 祝长生, 王玎. 飞轮储能用高速永磁电机转子的涡流损耗[J]. J4, 2011, 45(3): 451-457.
[10] 张惠峰, 关富玲. 可展桁架天线热-结构耦合分析[J]. J4, 2010, 44(12): 2320-2325.
[11] 卢琴芬 范承志 叶云岳. 新型抽油机用盘式永磁电机的磁场与力特性[J]. J4, 2008, 42(4): 651-655.