Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (12): 2533-2543    DOI: 10.3785/j.issn.1008-973X.2023.12.020
通信工程     
RIS辅助双功能雷达与隐蔽通信系统性能优化
胡浪涛1(),杨瑞1,黄崇文2,*(),刘全金1,吴磊1,谭镇坤1
1. 安庆师范大学 电子工程与智能制造学院,安徽 安庆 246133
2. 浙江大学 信息与电子工程学院,浙江 杭州 310058
Performance optimization of RIS assisted dual-function radar and covert communication system
Lang-tao HU1(),Rui YANG1,Chong-wen HUANG2,*(),Quan-jin LIU1,Lei WU1,Zhen-kun TAN1
1. School of Electronic Engineering and Intelligent Manufacturing, Anqing Normal University, Anqing 246133, China
2. College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310058, China
 全文: PDF(1547 KB)   HTML
摘要:

针对智能超表面(RIS)辅助双功能雷达与通信(DFRC)系统的隐蔽传输问题,提出多策略交替优化(MSAO)算法. 在隐蔽约束、雷达恒模约束和总功率约束的条件下,通过联合设计通信波束赋形向量、雷达信号协方差矩阵和RIS相位偏转矩阵,最大化合法用户Bob的隐蔽通信速率和目标探测功率,实现隐蔽通信和雷达感知功能的折中. 在完美Willie信道状态信息和不完美Willie信道状态信息场景下,仿真结果表明,相对于传统单连接RIS和没有部署RIS系统,采用广义全连接模式部署RIS可以更好地传输波束方向图,提高Bob隐蔽通信速率上限,扩大可实现速率的范围,实现通信和感知功能更大的自由度.

关键词: 波束赋形设计隐蔽通信双功能雷达与通信(DFRC)智能超表面(RIS)广义全连接RIS    
Abstract:

A multi strategy alternating optimization (MSAO) algorithm was proposed for covert transmission of the reconfigurable intelligence surface (RIS) assisted dual-function radar and communication (DFRC) system. Under the conditions of covert constraints, radar constant modulus constraints and total power constraints, the communication beamforming vector, radar signal covariance matrix and RIS phase shift matrix were jointly designed to maximize the legitimate user Bob’ s covert communication rate and probing power at target, in order to achieve a tradeoff between covert communication and radar sensing. In both the perfect and imperfect Willie’ s channel state information scenarios, the simulation results show that deploying RIS in a generalized fully connected mode can better transmit beamforming maps, increase the upper limit of Bob’ s covert communication rate, expand the achievable range of rates, and achieve greater freedom in communication and sensing functions compared to traditional single connected RIS and systems without RIS deployment.

Key words: beamforming design    covert communication    dual-function radar and communication (DFRC)    reconfigurable intelligence surface (RIS)    generalized fully connected RIS
收稿日期: 2023-03-13 出版日期: 2023-12-27
CLC:  TN 929.5  
基金资助: 国家重点研发计划资助项目(2021YFA1000500);国家自然科学基金资助项目(62101492);浙江省杰出青年基金资助项目(LR22F010002)
通讯作者: 黄崇文     E-mail: 122634998@qq.com;chongwenhuang@zju.edu.cn
作者简介: 胡浪涛(1982—),男,副教授,博士,从事隐蔽通信研究. orcid.org/0000-0003-1704-2736. E-mail: 122634998@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
胡浪涛
杨瑞
黄崇文
刘全金
吴磊
谭镇坤

引用本文:

胡浪涛,杨瑞,黄崇文,刘全金,吴磊,谭镇坤. RIS辅助双功能雷达与隐蔽通信系统性能优化[J]. 浙江大学学报(工学版), 2023, 57(12): 2533-2543.

Lang-tao HU,Rui YANG,Chong-wen HUANG,Quan-jin LIU,Lei WU,Zhen-kun TAN. Performance optimization of RIS assisted dual-function radar and covert communication system. Journal of ZheJiang University (Engineering Science), 2023, 57(12): 2533-2543.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.12.020        https://www.zjujournals.com/eng/CN/Y2023/V57/I12/2533

图 1  RIS辅助的DFRC隐蔽通信系统模型
参数 数值
BS位置/m (0, 0)
RIS位置/m (200 , 0 )
Bob位置/m 在以(200 , 30)为中心,半径<10
Willie位置/m (180 , 40 )
目标方向 从BS发射沿 ${0^\circ }$方向
BS天线数M 16
RIS反射元件数N 20
系统发射功率P/dBm 20
噪声功率 $ \sigma _{\rm{b}}^2 、 \sigma _{\rm{w}}^2 $/dBm 0
间接路径损失/dB $35.6+22.0\lg d{\text{ }}$
直接路径损失/dB $32.6+36.7\lg d{\text{ }}$
隐蔽性阈值 0.005
CSI误差 ${v_{\rm{w}}} $ 0.005
表 1  RIS辅助DFRC隐蔽通信系统仿真参数设置
图 2  多策略交替优化算法的收敛性
图 3  2种Willie场景下的波束方向图比较
图 4  2种Willie场景下目标处的探测功率与Bob隐蔽通信速率的折中
图 5  RIS反射元件数量对波束方向图的影响
图 6  RIS水平部署位置对波束方向图的影响
图 7  隐蔽性阈值与Bob隐蔽通信速率的关系
图 8  隐蔽性阈值与检测错误概率的关系
1 LIU F, MASOUROS C, PETROPULU A P, et al Joint radar and communication design: applications, state-of-the-art, and the road ahead[J]. IEEE Transactions on Communications, 2020, 68 (6): 3834- 3862
doi: 10.1109/TCOMM.2020.2973976
2 王晓云, 张小舟, 马良, 等 6G通信感知一体化网络的感知算法研究与优化[J]. 通信学报, 2023, 44 (2): 219- 230
WANG Xiao-yun, ZHANG Xiao-zhou, MA Liang, et al Research and optimization on the sensing algorithm for 6G integrated sensing and communication network[J]. Journal on Communications, 2023, 44 (2): 219- 230
3 LIU F, ZHOU L, MASOUROS C, et al Towards dual-functional radar-communication systems: optimal waveform design[J]. IEEE Transactions on Signal Processing, 2018, 66 (16): 4264- 4279
doi: 10.1109/TSP.2018.2847648
4 MA S, SHENG H, YANG R, et al Covert beamforming design for integrated radar sensing and communication systems[J]. IEEE Transactions on Wireless Communications, 2022, 22 (1): 718- 731
5 HUANG C, ZAPPONE A, ALEXANDROPOULOS G C, et al Reconfigurable intelligent surfaces for energy efficiency in wireless communication[J]. IEEE Transactions on Wireless Communications, 2019, 18 (8): 4157- 4170
doi: 10.1109/TWC.2019.2922609
6 郭海燕, 杨震, 邹玉龙, 等 基于主被动波束成形联合优化的双 RIS 辅助抗干扰通信方法[J]. 通信学报, 2022, 43 (7): 21- 30
GUO Hai-yan, YANG Zhen, ZOU Yu-long, et al Double-RIS assisted anti-jamming communication method based on joint active and passive beamforming optimization[J]. Journal on Communications, 2022, 43 (7): 21- 30
7 杨晓宇, 尉志青, 孟春伟 可重构智能表面辅助的通信感知一体化系统[J]. 中兴通讯技术, 2022, 28 (5): 17- 22
YANG Xiao-yu, WEI Zhi-qing, MENG Chun-wei Reconfigurable intelligent surface-assisted lntegrated sensing and communication system[J]. ZTE Technology Journal, 2022, 28 (5): 17- 22
doi: 10.12142/ZTETJ.202205005
8 WU Q, ZHANG R Intelligent reflecting surface enhanced wireless network via joint active and passive beamforming[J]. IEEE Transactions on Wireless Communications, 2019, 18 (11): 5394- 5409
doi: 10.1109/TWC.2019.2936025
9 BUZZI S, GROSSI E, LOPS M, et al Radar target detection aided by reconfigurable intelligent surfaces[J]. IEEE Signal Processing Letters, 2021, 28: 1315- 1319
doi: 10.1109/LSP.2021.3089085
10 XU C, CLERCKX B, ZHANG J Multi-antenna joint radar and communications: precoder optimization and weighted sum-rate vs probing power tradeoff[J]. IEEE Access, 2020, 8: 173974- 173982
doi: 10.1109/ACCESS.2020.3025156
11 DELIGIANNIS A, DANIYAN A, LAMBOTHARAN S, et al Secrecy rate optimizations for MIMO communication radar[J]. IEEE Transactions on Aerospace and Electronic Systems, 2018, 54 (5): 2481- 2492
doi: 10.1109/TAES.2018.2820370
12 CHALISE B K, AMIN M G Performance tradeoff in a unified system of communications and passive radar: a secrecy capacity approach[J]. Digital Signal Processing, 2018, 82: 282- 293
doi: 10.1016/j.dsp.2018.06.017
13 杨杰, 季新生, 王飞虎, 等 窃听者随机分布下智能反射面辅助的MISO系统物理层安全性能分析[J]. 电子与信息学报, 2022, 44 (5): 1809- 1818
YANG Jie, JI Xin-sheng, WANG Fei-hu, et al Performance analysis of physical layer security for IRS-aided MISO system with randomly distributed eavesdropping nodes[J]. Journal of Electronics and Information Technology, 2022, 44 (5): 1809- 1818
14 CHU J, LIU R, LI M, et al Joint secure transmit beamforming designs for integrated sensing and communication systems[J]. IEEE Transactions on Vehicular Technology, 2023, 72 (4): 4778- 4791
doi: 10.1109/TVT.2022.3225952
15 WANG D, QI P, ZHAO Y, et al Covert wireless communication with noise uncertainty in space-air-ground integrated vehicular networks[J]. IEEE Transactions on Intelligent Transportation Systems, 2022, 23 (3): 2784- 2797
doi: 10.1109/TITS.2021.3098790
16 MA S, ZHANG Y, LI H, et al Covert beamforming design for intelligent-reflecting-surface-assisted IoT networks[J]. IEEE Internet of Things Journal, 2022, 9 (7): 5489- 5501
doi: 10.1109/JIOT.2021.3109746
17 ZHOU X, YAN S, WU Q, et al Intelligent reflecting surface (IRS)-aided covert wireless communications with delay constraint[J]. IEEE Transactions on Wireless Communications, 2022, 21 (1): 532- 547
doi: 10.1109/TWC.2021.3098099
18 SI J, LI Z, ZHAO Y, et al Covert transmission assisted by intelligent reflecting surface[J]. IEEE Transactions on Communications, 2021, 69 (8): 5394- 5408
doi: 10.1109/TCOMM.2021.3082779
19 WANG X, FEI Z, ZHENG Z, et al Joint waveform design and passive beamforming for RIS-assisted dual-functional radar-communication system[J]. IEEE Transactions on Vehicular Technology, 2021, 70 (5): 5131- 5136
doi: 10.1109/TVT.2021.3075497
20 SHEN S, CLERCKX B, MURCH R Modeling and architecture design of reconfigurable intelligent surfaces using scattering parameter network analysis[J]. IEEE Transactions on Wireless Communications, 2022, 21 (2): 1229- 1243
doi: 10.1109/TWC.2021.3103256
21 LEHMANN E L, ROMANO J P. Testing statistical hypotheses [M]. New York: Springer, 2005.
22 LIU F, MASOUROS C A tutorial on joint radar and communication transmission for vehicular networks—Part I: background and fundamentals[J]. IEEE Communications Letters, 2021, 25 (2): 322- 326
doi: 10.1109/LCOMM.2020.3025310
23 YAN S, CONG Y, HANLY S V, et al Gaussian signalling for covert communications[J]. IEEE Transactions on Wireless Communications, 2019, 18 (7): 3542- 3553
doi: 10.1109/TWC.2019.2915305
24 CHRISTENSEN S S, AGARWAL R, DE CARVALHO E, et al Weighted sum-rate maximization using weighted MMSE for MIMO-BC beamforming design[J]. IEEE Transactions on Wireless Communications, 2008, 7 (12): 4792- 4799
doi: 10.1109/T-WC.2008.070851
25 LUO Z Q, MA W K, SO A M C, et al Semidefinite relaxation of quadratic optimization problems[J]. IEEE Signal Processing Magazine, 2010, 27 (3): 20- 34
doi: 10.1109/MSP.2010.936019
26 SHEN K, YU W Fractional programming for communication systems—Part II: uplink scheduling via matching[J]. IEEE Transactions on Signal Processing, 2018, 66 (10): 2631- 2644
doi: 10.1109/TSP.2018.2812748
27 SHEN K, YU W Fractional programming for communication systems—Part I: power control and beamforming[J]. IEEE Transactions on Signal Processing, 2018, 66 (10): 2616- 2630
doi: 10.1109/TSP.2018.2812733
28 WEI L, HUANG C, ALEXANDROPOULOS G C, et al Channel estimation for RIS-empowered multi-user MISO wireless communications[J]. IEEE Transactions on Communications, 2021, 69 (6): 4144- 4157
doi: 10.1109/TCOMM.2021.3063236
29 FOROUZESH M, AZMI P, MOKARI N, et al Covert communication using null space and 3D beamforming: Uncertainty of Willie’s location information[J]. IEEE Transactions on Vehicular Technology, 2020, 69 (8): 8568- 8576
doi: 10.1109/TVT.2020.2997074
30 NG D W K, LO E S, SCHOBER R Robust beamforming for secure communication in systems with wireless information and power transfer[J]. IEEE Transactions on Wireless Communications, 2014, 13 (8): 4599- 4615
doi: 10.1109/TWC.2014.2314654
[1] 陈俊杰,李洪均,朱晓军. 采用Benders分解的5G核心网用户面动态部署算法[J]. 浙江大学学报(工学版), 2023, 57(3): 625-631.
[2] 容志能,金文光,骆一希. 人体运动传感数据的无线采集方案设计[J]. J4, 2012, 46(7): 1314-1319.
[3] 求钦龙,吴春明, 平玲娣,吕红兵. 重传TCP确认包及在长期演进网络中的应用[J]. J4, 2011, 45(9): 1509-1515.
[4] 赵仙红,杨俊,赵利民. 新的幅值扰动形成零陷算法[J]. J4, 2011, 45(1): 64-67.
[5] 陈勋, 张朝阳, 罗海燕. 无线Mesh网络中功率控制、信道分配和调度的联合优化[J]. J4, 2009, 43(8): 1406-1411.