Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (9): 1814-1823    DOI: 10.3785/j.issn.1008-973X.2023.09.013
机械工程、能源工程     
不同边界条件下热电发电器件瞬态响应特性分析
罗丁(),吴海峰,杨学林
三峡大学 电气与新能源学院,湖北 宜昌 443000
Analysis of transient response characteristics of thermoelectric power generation device under different boundary conditions
Ding LUO(),Hai-feng WU,Xue-lin YANG
College of Electrical Engineering and New Energy, China Three Gorges University, Yichang 443000, China
 全文: PDF(2225 KB)   HTML
摘要:

鉴于实际应用中热源的非稳态特性,建立热电发电器件的三维瞬态热-电耦合数值模型,以阶跃上升、阶跃下降、线性上升、线性下降、正弦波和三角波6种热源波形作为输入,对比并分析在瞬态温度边界条件和瞬态热流边界条件下的响应特性. 结果表明:该模型能准确模拟热电发电器件的瞬态输出性能,仿真结果与试验测量的电压和功率误差分别为3.30%和6.58%;由于温度变化具有连续性,瞬态热流边界条件比瞬态温度边界条件更合理;受热惯性的影响,即使热源输入急剧变化,热电发电器件的输出功率仍呈现平缓的变化趋势,且存在时滞现象;周期性热源能够提升热电发电器件的输出性能,在正弦波和三角波的周期性热源中,热电发电器件的输出功率分别提升了7.48%和5.76%,转换效率分别提升了11.58%和8.48%.

关键词: 热电发电器件瞬态边界条件数值模型响应特性    
Abstract:

A three-dimension transient thermal-electric coupling numerical model for thermoelectric power generation device was established considering the unsteady state of heat sources in practical applications. Taking six waveforms as heat source input, including step increase, step decrease, linear increase, linear decrease, sine wave, and triangular wave, the response characteristics under transient temperature boundary condition and heat flux boundary condition were analyzed and compared. Results show that the model can accurately simulate the transient output performance of thermoelectric power generation device. And the errors of voltage and power between the model and the experimental results were 3.30% and 6.58% respectively. Due to the continuity of temperature change, the transient heat flux boundary condition is more reasonable than the transient temperature boundary condition. Even if the heat source changes sharply, the output power presents a smooth changing trend, and there is a time delay phenomenon due to the thermal inertia. The periodic heat source can improve the performance of thermoelectric power generation device. The output power were increased by 7.48% and 5.76%, and the conversion efficiency were increased by 11.58% and 8.48% for the heat sources of the sine wave and the triangular wave, respectively.

Key words: thermoelectric power generation device    transient state    boundary condition    numerical model    response characteristic
收稿日期: 2022-11-17 出版日期: 2023-10-16
CLC:  TK 01+9  
基金资助: 国家自然科学基金资助项目(52306017, 52072217, 22179071);湖北省自然科学基金资助项目(2023AFB093)
作者简介: 罗丁(1995—),男,副教授,从事热电转换及应用研究. orcid.org/0000-0001-9070-2417. E-mail: Ding_L@outlook.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
罗丁
吴海峰
杨学林

引用本文:

罗丁,吴海峰,杨学林. 不同边界条件下热电发电器件瞬态响应特性分析[J]. 浙江大学学报(工学版), 2023, 57(9): 1814-1823.

Ding LUO,Hai-feng WU,Xue-lin YANG. Analysis of transient response characteristics of thermoelectric power generation device under different boundary conditions. Journal of ZheJiang University (Engineering Science), 2023, 57(9): 1814-1823.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.09.013        https://www.zjujournals.com/eng/CN/Y2023/V57/I9/1814

图 1  热电发电器件结构示意图
参数 数值
P型半导体 N型半导体
热导率
λ/(W·m?1·K?1)
$ \begin{aligned} 1.685 &\times {10^{ - 7}}{T^3} - \\& 1.895 \times {10^{ - 4}}{T^2}+ \\& 0.070T - 6.839 \\ \end{aligned} $ $ \begin{aligned} 1.474 &\times {10^{ - 7}}{T^3} - \\ &1.590 \times {10^{ - 4}}{T^2}+ \\ &0.057T - 5.096 \\ \end{aligned} $
塞贝克系数
S/(μV·K?1)
$ \begin{aligned} 1.322 & \times {10^{ - 5}}{T^3} - \\ &0.017{T^2}+ \\ &7.310T - 853.661 \\ \end{aligned} $ $ \begin{aligned} - 1.524 & \times {10^{ - 5}}{T^3}+ \\ &0.019{T^2} - \\ &8.230T+981.109 \\ \end{aligned} $
电阻率
σ?1/(10?5 Ω·m)
$ \begin{aligned} - 9.035 & \times {10^{ - 9}}{T^3}+ \\ &1.638 \times {10^{ - 5}}{T^2} - \\& 4.250 \times {10^{ - 3}}T+0.665 \\ \end{aligned} $ $ \begin{aligned} 4.452 & \times {10^{ - 8}}{T^3} - \\& 5.529 \times {10^{ - 5}}{T^2}+ \\& 2.591 \times {10^{ - 2}}T - 3.409 \\ \end{aligned} $
比热容
c/(J·kg?1·K?1)
$ \begin{aligned} 1.729 & \times {10^{ - 5}}{T^3} - \\& 0.021{T^2}+ \\& 8.440T - 945.686 \\ \end{aligned} $ $ \begin{aligned} 1.020 & \times {10^{ - 5}}{T^3} - \\& 1.280 \times {10^{ - 2}}{T^2}+ \\& 5.372T - 581.600 \\ \end{aligned} $
表 1  TEG1-12708热电材料参数
图 2  瞬态热源边界条件
图 3  热电发电器件在不同稳态温度输入下的负载输出曲线
图 4  正弦波瞬态热流边界下的热电发电器件仿真结果
图 5  瞬态温度边界条件下的输出功率与转换效率
图 6  瞬态热流边界条件下的输出功率
图 7  瞬态热流边界条件下的转换效率与热流量
图 8  瞬态热流边界条件下热电半导体的热量变化
图 9  不同边界条件下的温度变化
图 10  不同边界条件下的输出功率与转换效率
图 11  不同边界条件下的瞬态性能与稳态性能对比
图 12  瞬态试验台架
图 13  仿真结果与试验结果对比
1 毛佳妮, 江述帆, 方奇, 等 新型太阳能温差发电集热体的传热特性[J]. 浙江大学学报: 工学版, 2015, 49 (11): 2205- 2213
MAO Jia-ni, JIANG Shu-fan, FANG Qi, et al Heat transfer characteristics of novel heat collector on solar-thermoelectric power generation[J]. Journal of Zhejiang University: Engineering Science, 2015, 49 (11): 2205- 2213
2 LUO D, YAN Y Y, LI Y, et al Exhaust channel optimization of the automobile thermoelectric generator to produce the highest net power[J]. Energy, 2023, 281: 128319
doi: 10.1016/j.energy.2023.128319
3 LALONDE A D, PEI Y Z, WANG H, et al Lead telluride alloy thermoelectrics[J]. Materials Today, 2011, 14 (11): 526- 532
doi: 10.1016/S1369-7021(11)70278-4
4 LUO D, SUN Z Y, WANG R C Performance investigation of a thermoelectric generator system applied in automobile exhaust waste heat recovery[J]. Energy, 2022, 238: 121816
doi: 10.1016/j.energy.2021.121816
5 SHEN Z G, TIAN L L, LIU X Automotive exhaust thermoelectric generators: current status, challenges and future prospects[J]. Energy Conversion and Management, 2019, 195: 1138- 1173
doi: 10.1016/j.enconman.2019.05.087
6 LUO D, WU Z H, YAN Y Y, et al Optimal design of a heat exchanger for automotive thermoelectric generator systems applied to a passenger car[J]. Applied Thermal Engineering, 2023, 227: 120360
doi: 10.1016/j.applthermaleng.2023.120360
7 LV H C, LIANG L R, ZHANG Y C, et al A flexible spring-shaped architecture with optimized thermal design for wearable thermoelectric energy harvesting[J]. Nano Energy, 2021, 88: 106260
doi: 10.1016/j.nanoen.2021.106260
8 于冉冉, 刘联胜, 葛明慧, 等 太阳能温差发电系统的性能[J]. 浙江大学学报: 工学版, 2018, 52 (4): 769- 774
YU Ran-ran, LIU Lian-sheng, GE Ming-hui, et al Performance of solar thermoelectric power generation system[J]. Journal of Zhejiang University: Engineering Science, 2018, 52 (4): 769- 774
9 SUN Z Y, LUO D, WANG R C, et al Evaluation of energy recovery potential of solar thermoelectric generators using a three-dimensional transient numerical model[J]. Energy, 2022, 256: 124667
doi: 10.1016/j.energy.2022.124667
10 LI G N, ZHENG Y Q, HU J E, et al Experiments and a simplified theoretical model for a water-cooled, stove-powered thermoelectric generator[J]. Energy, 2019, 185: 437- 448
doi: 10.1016/j.energy.2019.07.023
11 CHEN L G, MENG F K, GE Y L, et al Performance optimization of a class of combined thermoelectric heating devices[J]. Science China Technological Sciences, 2020, 63: 2640- 2648
doi: 10.1007/s11431-019-1518-x
12 LUO D, YAN Y Y, CHEN W H, et al A comprehensive hybrid transient CFD-thermal resistance model for automobile thermoelectric generators[J]. International Journal of Heat and Mass Transfer, 2023, 211: 124203
doi: 10.1016/j.ijheatmasstransfer.2023.124203
13 LUO D, WANG R C, YU W, et al Parametric study of a thermoelectric module used for both power generation and cooling[J]. Renewable Energy, 2020, 154: 542- 552
doi: 10.1016/j.renene.2020.03.045
14 LUO D, YAN Y Y, LI Y, et al A hybrid transient CFD-thermoelectric numerical model for automobile thermoelectric generator systems[J]. Applied Energy, 2023, 332: 120502
doi: 10.1016/j.apenergy.2022.120502
15 FAN L H, ZHANG G B, WANG R F, et al A comprehensive and time-efficient model for determination of thermoelectric generator length and cross-section area[J]. Energy Conversion and Management, 2016, 122: 85- 94
doi: 10.1016/j.enconman.2016.05.064
16 MENG J H, ZHANG X X, WANG X D Characteristics analysis and parametric study of a thermoelectric generator by considering variable material properties and heat losses[J]. International Journal of Heat and Mass Transfer, 2015, 80: 227- 235
doi: 10.1016/j.ijheatmasstransfer.2014.09.023
17 LIAO M J, HE Z, JIANG C P, et al A three-dimensional model for thermoelectric generator and the influence of Peltier effect on the performance and heat transfer[J]. Applied Thermal Engineering, 2018, 133: 493- 500
doi: 10.1016/j.applthermaleng.2018.01.080
18 LUO D, ZHAO Y, YAN Y Y, et al Development of two transient models for predicting dynamic response characteristics of an automobile thermoelectric generator system[J]. Applied Thermal Engineering, 2023, 221: 119793
doi: 10.1016/j.applthermaleng.2022.119793
19 ZHANG A B, PANG D D, WANG B L, et al Dynamic responses of wearable thermoelectric generators used for skin waste heat harvesting[J]. Energy, 2023, 262: 125621
doi: 10.1016/j.energy.2022.125621
[1] 白聪儿,孙哲杰,秦美娟,王潇,刘勇. 风电机组传动链动力响应特性与支撑系统影响[J]. 浙江大学学报(工学版), 2023, 57(6): 1165-1174.
[2] 孟凡凯,徐辰欣,孙悦桐. 含发热元件密闭空间热电制冷器瞬态特性[J]. 浙江大学学报(工学版), 2023, 57(1): 55-62.
[3] 王锋,孙中国,郑旭,韩沛东,席光. 基于无网格粒子法的复杂三维形状通用离散方法[J]. 浙江大学学报(工学版), 2022, 56(8): 1597-1605.
[4] 赵楠楠,胡亮,毛凯,陈文昱,傅新. 超声波体积流量计声场混合计算方法[J]. 浙江大学学报(工学版), 2020, 54(8): 1466-1473.
[5] 吴浩宇,赵永生,何炎平,毛文刚,阳杰,谷孝利,黄超. 张力腿浮式风机筋腱失效模式下瞬态响应分析[J]. 浙江大学学报(工学版), 2020, 54(11): 2196-2203.
[6] 闵小滕,唐志国,高钦,宋安琪,王守成. 基于微小通道波形扁管的圆柱电池液冷模组散热特性[J]. 浙江大学学报(工学版), 2019, 53(3): 463-469.
[7] 连启祥,杜志叶,金硕,杨知非,黄国栋,阮江军. 采用瞬态上流元法的油纸绝缘瞬态电场研究[J]. 浙江大学学报(工学版), 2019, 53(2): 399-406.
[8] 田帅奇, 仉庆宇, 王可, 范利武, 俞自涛, 葛坚. 试样尺寸对水蒸气扩散系数瞬态测试的影响[J]. 浙江大学学报(工学版), 2018, 52(11): 2077-2082.
[9] 杜洋, 马利, 郑津洋, 张帆, 张安达. 考虑流固耦合的管道爆炸后果预测与分析[J]. 浙江大学学报(工学版), 2017, 51(3): 429-435.
[10] 袁世斐, 吴红杰, 殷承良. 锂离子电池简化电化学模型:浓度分布估计[J]. 浙江大学学报(工学版), 2017, 51(3): 478-486.
[11] 邹维列, 贺扬, 张凤德, 王东星, 汪帅, 王远明. 改性淤泥固化土非饱和渗透特性试验研究[J]. 浙江大学学报(工学版), 2017, 51(11): 2182-2188.
[12] 易思阳,金虹庆,范利武,徐旭,俞自涛,葛坚. 多孔建筑材料水蒸气扩散系数的瞬态测试方法[J]. 浙江大学学报(工学版), 2016, 50(1): 16-20.
[13] 姚晓莉, 易思阳, 范利武, 徐旭, 俞自涛, 葛坚. 不同孔隙率下含湿加气混凝土的有效导热系数[J]. 浙江大学学报(工学版), 2015, 49(6): 1101-1107.
[14] 杨连枝, 张亮亮, 余莲英, 尚兰歌, 高阳, 王敏中. 悬臂梁固定端不同位移边界条件下解的对比[J]. 浙江大学学报(工学版), 2014, 48(11): 1955-1961.
[15] 李红霞, 李冠球, 李蔚. 管内颗粒污垢特性分析[J]. J4, 2012, 46(9): 1671-1677.