Please wait a minute...
浙江大学学报(工学版)  2023, Vol. 57 Issue (6): 1234-1241    DOI: 10.3785/j.issn.1008-973X.2023.06.019
航空航天技术     
径向分级燃烧室热声特性的试验研究
傅燕妮1,2(),隋永枫2,张宇明2,郑耀1,夏一帆1,*()
1. 浙江大学 航空航天学院,浙江 杭州 310027
2. 杭州汽轮机股份有限公司,浙江 杭州 310022
Experimental study on thermoacoustic performance of radial staged combustor
Yan-ni FU1,2(),Yong-feng SUI2,Yu-ming ZHANG2,Yao ZHENG1,Yi-fan XIA1,*()
1. School of Aeronautics and Astronautics, Zhejiang University, Hangzhou 310027, China
2. Hangzhou Steam Turbine Limited Company, Hangzhou 310022, China
 全文: PDF(1878 KB)   HTML
摘要:

为了探究径向分级燃烧室燃料分配比例对燃烧室热声特性的影响,对工业级单筒4 MW功率等级径向分级燃烧室进行试验研究. 试验中通过改变径向上值班喷嘴和主燃喷嘴的燃料分配比例,分析燃料分配比例对动态压力特征频率和幅值的影响. 采用相空间重构方法和递归分析方法,探究燃料分配比例变化过程中燃烧室内热声状态的变化特征. 结果表明,燃烧室内整体存在低频(70~90 Hz)和高频(200~230 Hz)2个主导频率. 在燃料分配比例调节过程中,出现低频向高频跃迁现象. 相空间重构图和递归图显示,当燃料分配比例增大时,燃烧室内热声状态存在切换过程:由准周期状态过渡为混沌状态,最终切换至极限环状态.

关键词: 径向分级燃烧室热声振荡相空间分析递归分析    
Abstract:

In order to investigate the effect of fuel distribution ratio of a radial staged combustor on the thermoacoustic characteristics, experimental tests were carried out on a 4 MW industrial can combustor, which had the radial staged combustor. In the tests, by changing the fuel distribution ratio of the pilot burner and the main burner, the influence of fuel distribution ratio on the frequency and amplitude of the dynamic pressure was analyzed. The phase space reconstruction method and the recursive analysis were used to investigate the thermoacoustic variation characteristics of the combustor during the process of changing the distribution ratios. Results showed that there were two dominant frequencies of a low frequency (70?90 Hz) and a high frequency (200?230 Hz) in the combustor. During the process of changing the fuel distribution ratio, the dominant frequency jumped from the low frequency to the high frequency. The reconstructed phase plots and the recurrence plots showed that as the fuel distribution ratio increased, the thermoacoustic state in the combustion chamber had a switching process. The thermoacoustic state transitioned from quasi periodic state to chaotic state, and finally switched to limit cycle state.

Key words: radial staged combustor    thermoacoustic oscillation    phase space analysis    recursive analysis
收稿日期: 2022-06-06 出版日期: 2023-06-30
CLC:  TK 47  
基金资助: 浙江省重点研发计划资助项目(2020C01088)
通讯作者: 夏一帆     E-mail: fuyn@zju.edu.cn;xiayifan@zju.edu.cn
作者简介: 傅燕妮(1991—),女,博士生,从事燃气轮机燃烧室燃烧稳定性研究. orcid.org/0000-0002-9347-2503. E-mail: fuyn@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
傅燕妮
隋永枫
张宇明
郑耀
夏一帆

引用本文:

傅燕妮,隋永枫,张宇明,郑耀,夏一帆. 径向分级燃烧室热声特性的试验研究[J]. 浙江大学学报(工学版), 2023, 57(6): 1234-1241.

Yan-ni FU,Yong-feng SUI,Yu-ming ZHANG,Yao ZHENG,Yi-fan XIA. Experimental study on thermoacoustic performance of radial staged combustor. Journal of ZheJiang University (Engineering Science), 2023, 57(6): 1234-1241.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2023.06.019        https://www.zjujournals.com/eng/CN/Y2023/V57/I6/1234

图 1  径向分级燃烧室试验段结构
图 2  燃烧室试验台现场图
工况 Q/MW Φ
1 0.4 0.15
2 0.8 0.21
3 1.6 0.30
表 1  不同负荷下改变燃料分配比例的试验工况
图 3  工况3中动态压力信号的平均互信息指标随延迟时间变化曲线
图 4  工况3中动态压力信号的距离指标随嵌入维度变化曲线
图 5  试验工况下动态压力主频随燃料分配比例变化趋势图
图 6  试验工况下动态压力幅值随燃料分配比例变化趋势图
序号 β 序号 β
1 0.00 6 1.30
2 0.09 7 1.83
3 0.19 8 2.67
4 0.48 9 4.21
5 0.94 10 8.00
表 2  不同切换点的燃料分配比例(工况3)
图 7  工况3中不同燃料分配比例的动态压力相空间重构图
图 8  工况3中不同燃料分配比例的动态压力递归图
1 LIEUWEN T C, YANG V. Combustion instabilities in gas turbine engines: operational experience, fundamental mechanisms, and modeling [M]. [S.l.]: American Institute of Aeronautics and Astronautics, 2005.
2 王玮, 肖俊峰, 高松, 等 空燃比对燃气轮机燃烧室燃烧不稳定性影响的数值研究[J]. 燃烧科学与技术, 2019, 25 (5): 439- 444
WANG Wei, XIAO Jun-feng, GAO Song, et al Numerical study on influences of air-fuel ratio on combustion instability in gas turbine combustor[J]. Journal of Combustion Science and Technology, 2019, 25 (5): 439- 444
3 LEE J G, KIM K, SANTAVICCA D. A study of the role of equivalence ratio fluctuations during unstable combustion in a lean premixed combustor [C]// 38th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit. Indianapolis: AIAA, 2002.
4 HOBSON D E, FACKRELL J E, HEWITT G Combustion instabilities in industrial gas turbines—measurements on operating plant and thermoacoustic modeling[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122 (3): 420- 428
doi: 10.1115/1.1287238
5 付虓, 郭志辉 模型预混燃烧室燃烧不稳定性研究[J]. 航空动力学报, 2014, 29 (5): 1079- 1085
FU Xiao, GUO Zhi-hui Investigation on combustion instability in model premixed combustor[J]. Journal of Aerospace Power, 2014, 29 (5): 1079- 1085
6 付虓, 郭志辉, 杨甫江 模型预混燃烧室线性稳定性分析[J]. 航空动力学报, 2015, 30 (5): 1099- 1105
FU Xiao, GUO Zhi-hui, YANG Fu-jiang Linear stability analysis of modal premixed combustor[J]. Journal of Aerospace Power, 2015, 30 (5): 1099- 1105
7 JUNIPER M P, SUJITH R I Sensitivity and nonlinearity of thermoacoustic oscillations[J]. Annual Review of Fluid Mechanics, 2018, 50: 661- 689
doi: 10.1146/annurev-fluid-122316-045125
8 GOTODA H, OKUNO Y, HAYASHI K, et al Characterization of degeneration process in combustion instability based on dynamical systems theory[J]. Physical Review, 2015, 92 (5): 052906
9 GOTODA H, NIKIMOTO H, MIYANO T, et al Dynamic properties of combustion instability in a lean premixed gas-turbine combustor[J]. Chaos, 2011, 21: 013124
doi: 10.1063/1.3563577
10 陶成飞, 周昊, 胡流斌, 等 液雾燃烧的热声不稳定动态特性[J]. 浙江大学学报: 工学版, 2021, 55 (11): 2108- 2114
TAO Cheng-fei, ZHOU Hao, HU Liu-bin, et al Dynamic characteristics of thermoacoustic instability of liquid spray combustion[J]. Journal of Zhejiang University: Engineering Science, 2021, 55 (11): 2108- 2114
11 王欣尧, 韩啸, 林宇震, 等 中心分级旋流火焰中热声不稳定分岔现象研究[J]. 燃烧科学与技术, 2021, 27 (4): 382- 387
WANG Xin-yao, HAN Xiao, LIN Yu-zhen, et al Bifurcations of thermoacoustic instability in centrally-staged swirl flames[J]. Journal of Combustion Science and Technology, 2021, 27 (4): 382- 387
12 徐丽, 刘凯 燃料分配对燃气轮机燃烧室燃烧特性影响的研究[J]. 沈阳理工大学学报, 2012, 31 (2): 38- 41
XU Li, LIU Kai Study on combustion characteristics of fuel distribution of gas turbine combustor[J]. Transactions of Shenyang Ligong University, 2012, 31 (2): 38- 41
13 PACKARD N H, CRUTCHFIELD J P, FARMER J D, et al Geometry from a time series[J]. Physical Review Letters, 1980, 45 (9): 712- 716
doi: 10.1103/PhysRevLett.45.712
14 ABARBANEL H D I, BROWN R, SIDOROWICH J J, et al The analysis of observed chaotic data in physical system[J]. Reviews of Modern Physics, 1993, 65: 1331- 1392
doi: 10.1103/RevModPhys.65.1331
15 TAKENS F. Detecting strange attractors in turbulence [M]// RAND D, YOUNG L S. Dynamical systems and turbulence, Warwick 1980: proceedings of a symposium held at the university of Warwick 1979/80. [S.l.]: Springer, 1981, 366-381.
16 FRASER A M, SWINNEY H L Independent coordinates for strange attractors from mutual information[J]. Physical Review A, 1986, 33 (2): 1134- 1140
doi: 10.1103/PhysRevA.33.1134
17 CAO L Practical method for determining the minimum embedding dimension of a scalar time series[J]. Physica D Nonlinear Phenomena, 1997, 110 (1/2): 43- 50
18 ECKMAN J P, KAMPHORST S O, RUELLE D Recurrence plots of dynamical systems[J]. Europhysics Letters, 1987, 4 (9): 973- 977
doi: 10.1209/0295-5075/4/9/004
19 毛丹, 诸粤珊 三菱M701F燃气轮机燃烧调整分析[J]. 热力透平, 2009, 38 (3): 156- 160
MAO Dan, ZHU Yue-shan Analysis on combustion adjusting of mitsubishi M701F gas turbines[J]. Thermal Turbine, 2009, 38 (3): 156- 160
doi: 10.3969/j.issn.1672-5549.2009.03.003
20 陶成飞. 旋流预混燃烧热声不稳定的动态特性与控制研究[D]. 杭州: 浙江大学, 2021.
TAO Cheng-fei. Research on the dynamic characteristics and control of thermoacoustic instability in swirl premixed combustion [D]. Hangzhou: Zhejiang University, 2021.
21 KIM J, LIEUWEN T, EMERSON B, et al. High-frequency acoustic mode identification of unstable combustors [C]// ASME Turbo Expo 2019: Turbomachinery Technical Conference and Exposition. [S.l.]: ASME, 2019.
22 KIM J, GILLMAN W, WU D, et al. Identification of high-frequency transverse acoustic modes in multi-nozzle can combustors [C]// ASME Turbo Expo 2020: Turbomachinery Technical Conference and Exposition. Phoenix: ASME, 2019.
23 KIM D, PARK J, HAN D, et al Symmetry-breaking for the control of combustion instabilities of two interacting swirl-stabilized flames[J]. Combustion and Flame, 2018, 194: 180- 194
doi: 10.1016/j.combustflame.2018.04.035
24 LEE T, PARK J, HAN D, et al The dynamics of multiple interacting swirl-stabilized flames in a lean-premixed gas turbine combustor[J]. Proceedings of the Combustion Institute, 2019, 37 (4): 5137- 5145
doi: 10.1016/j.proci.2018.05.110
25 刘晓佩, 崔玉峰, 邢双喜, 等 富氢燃料贫预混旋流燃烧热声振荡特性的实验研究[J]. 燃气轮机技术, 2016, 29 (1): 25- 29
LIU Xiao-pei, CUI Yu-feng, XING Shuang-xi, et al Experimental study of the thermoacoustic oscillation of hydrogen-enriched lean-premixed swirl flame[J]. Gas Turbine Technology, 2016, 29 (1): 25- 29
26 张昊, 朱民 热声耦合振荡燃烧的实验研究与分析[J]. 推进技术, 2010, 31 (6): 730- 744
ZHANG Hao, ZHU Min Experimental study and analysis of thermo-acoustic instabilities in natural gas premixed flames[J]. Journal of Propulsion Technology, 2010, 31 (6): 730- 744
[1] 陶成飞,周昊,胡流斌,刘子华,岑可法. 液雾燃烧的热声不稳定动态特性[J]. 浙江大学学报(工学版), 2021, 55(11): 2108-2114.
[2] 王雷,李道飞,叶锦,徐焕祥,俞小莉. 车用发动机压缩空气制动循环特性[J]. J4, 2014, 48(1): 56-62.
[3] 温正城, 王智化, 杨卫娟, 等. 臭氧在烟气中氧化零价汞的机理研究[J]. J4, 2009, 43(09): 1625-1631.