Please wait a minute...
J4  2014, Vol. 48 Issue (1): 56-62    DOI: 10.3785/j.issn.1008-973X.2014.01.009
机械与能源工程     
车用发动机压缩空气制动循环特性
王雷,李道飞,叶锦,徐焕祥,俞小莉
浙江大学 能源工程学系,浙江 杭州 310027
Performances of vehicle engine air compression braking
WANG Lei, LI Dao-fei, YE Jin, XU Huan-xiang, YU Xiao-li
Department of Energy Engineering, Zhejiang University, Hangzhou 310027, China
 全文: PDF(884 KB)   HTML
摘要:

基于压缩空气储能回收车辆制动能量的思想,提出以单向阀作为能量回收阀的发动机压缩空气制动能量回收方法.通过热力学分析,建立发动机压缩空气制动模型,通过台架试验得到初步验证.通过对模型进行稳定工况仿真,得到发动机压缩空气制动在不同转速和不同气罐背压下的特性.通过车辆模拟制动仿真得到特定制动工况下气罐内气体累积过程及能量回收效率.结果表明:缸内最大压力与气罐背压之差是影响制动性能的内在关键因素,增大压缩比可以增加发动机制动转矩,提高能量回收效率;在稳定工况条件下,发动机压缩空气制动循环的最大制动转矩可达驱动时最大转矩的54%,最大能量回收率可达8.5%;在所选的模拟制动工况下,采用发动机压缩空气制动能够使车辆获得较稳定的减速度,整车能量回收率达到10.2%.

Abstract:

A novel engine regenerative braking method was presented which adopts a check valve for energy recovery based on the idea of braking energy recovery through compressed air. A single cylinder gasoline engine prototype was modeled and validated with preliminary test by using thermodynamics and gas dynamics theory. Engine braking performances at steady state simulations were discussed, including engine braking torque and energy recovery efficiency with different engine speed and tank pressure. Transient simulations of vehicle deceleration were conducted to analyze tank pressure accumulating and energy recovery efficiency. Results show that the difference between maximum pressure in engine cylinder and tank pressure is the crucial factor influencing braking characteristics. The engine braking torque and efficiency can both increase with higher compression ratio. At steady state simulation cases, the braking torque reaches 54% of the maximum driven torque of engine conventional mode and the maximum energy recovery efficiency reaches 8.5%. Vehicle braking simulation at certain conditions shows an effective deceleration and efficiency of 10.2%.

出版日期: 2014-01-01
:  TK 472  
基金资助:

国家“973”重点基础研究发展规划资助项目(2011CB707205);国家自然科学基金资助项目(50976104).

通讯作者: 李道飞,男,助理研究员.     E-mail: dfli@zju.edu.cn
作者简介: 王雷(1987-),男,博士生,从事车辆动力能源多元化的研究. E-mail: zjuwl@zju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  

引用本文:

王雷,李道飞,叶锦,徐焕祥,俞小莉. 车用发动机压缩空气制动循环特性[J]. J4, 2014, 48(1): 56-62.

WANG Lei, LI Dao-fei, YE Jin, XU Huan-xiang, YU Xiao-li. Performances of vehicle engine air compression braking. J4, 2014, 48(1): 56-62.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2014.01.009        http://www.zjujournals.com/eng/CN/Y2014/V48/I1/56

[1] EHSANI M, GAO Y, EMADI A. Modern electric, hybrid electric, and fuel cell vehicles: fundamentals, theory, and design [M]. 2nd ed. Boca Raton: CRC, 2010.
[2] 翟昕, 俞小莉, 刘忠民. 压缩空气-燃油混合动力的研究[J]. 浙江大学学报:工学版, 2006, 40(4): 610-613.
ZHAI Xin, YU Xiao-li, LIU Zhong-min. Research on hybrid of compressed-air and fuel [J]. Journal of Zhejiang University: Engineering Science, 2006, 40(4): 610-613.
[3] 胡军强, 俞小莉, 陈平录, 等. 气动-柴油混合动力空气管理策略研究[J]. 内燃机工程, 2009, 30(4): 7-11.
HU Jun-qiang, YU Xiao-li, CHEN Ping-lu, et al. Air management of air-powered and diesel hybrid engine [J]. Chinese Internal Combustion Engine Engineering, 2009, 30(4): 7-11.
[4] 陈平录, 俞小莉, 聂相虹, 等. 并联型气动燃油混合动力汽车控制策略[J]. 浙江大学学报:工学版, 2011, 45(2): 348-353.
CHEN Ping-lu, YU Xiao-li, NIE Xiang-hong, et al. Control strategy for parallel hybrid air-fuel vehicle [J]. Journal of Zhejiang University: Engineering Science, 2011, 45(2): 348-353.
[5] SCHECHTER M M. New cycles for automobile engines [C]∥ International Congress and Exposition. Detroit: SAE, 1999-01-0623.
[6] SCHECHTER M M. Regenerative compression braking: a low cost alternative to electric hybrids [C]∥ SAE 2000 World Congress. Detroit: SAE, 2000-01-1025.
[7] TAI C, TSAO T C, LEVIN M B, et al. Using camless valvetrain for air hybrid optimization [C]∥ SAE 2003 World Congress and Exhibition. Detroit: SAE, 2003-01-0038.
[8] TRAJKOVIC S, TUNESTAL P, JOHANSSON B, et al. Introductory study of variable valve actuation for pneumatic hybridization [C]∥SAE 2007 World Congress and Exhibition.Detroit: SAE, 2007-01-0288.
[9] TRAJKOVIC S, TUNESTAL P, JOHANSSON B. Investigation of different valve geometries and valve timing strategies and their effect on regenerative efficiency for a pneumatic hybrid with variable valve actuation [C]∥2008 SAE International Powertrains, Fuels and Lubricants Congress. Shanghai: SAE, 2008-01-1715.
[10] LI Dao-fei, WANG Lei, YE Jin, et al. Valve strategy design for braking energy regeneration through engine air compression [C]∥The 2012 International Conference on Advanced Vehicle Technologies and Integration. Changchun: [s.n.], 2012: 16-19.
[11] 胡军强, 俞小莉, 聂相虹, 等. 并联式气动-柴油混合动力可行性研究[J]. 浙江大学学报:工学版, 2009, 43(9): 1632-1637.
HU Jun-qiang, YU Xiao-li, NIE Xiang-hong, et al. Feasibility of parallel air-powered and diesel hybrid engine [J]. Journal of Zhejiang University: Engineering Science, 2009, 43(9): 1632-1637.
[12] CENGEL Y A, BOLES M A. Thermodynamics an engineering approach [M]. 4th ed. New York: McGraw-Hill, 2002.
[13] 濮良贵,纪名刚,陈国定,等.机械设计[M].8版.北京:高等教育出版社, 2006.

No related articles found!