Please wait a minute...
浙江大学学报(工学版)  2022, Vol. 56 Issue (12): 2514-2522    DOI: 10.3785/j.issn.1008-973X.2022.12.021
航空航天技术     
多矢量信息下的星敏感器三轴旋转角求解方法
段辉(),张志利,周召发*(),徐泽乾,赵芝谦,王韶迪
火箭军工程大学 导弹工程学院,陕西 西安 710025
Three-axis rotation angle solving method of star sensor under multi-vector information
Hui DUAN(),Zhi-li ZHANG,Zhao-fa ZHOU*(),Ze-qian XU,Zhi-qian ZHAO,Shao-di WANG
School of Missile Engineering, Rocket Force University of Engineering, Xi’an 710025, China
 全文: PDF(989 KB)   HTML
摘要:

为了提高星敏感器的实时性能与解算精度,基于多矢量信息,提出四元数表示形式下的星敏感器三轴旋转角求解方法,从理论上对所提方法进行详细推导. 基于单个星光矢量在天球系与星敏系中的三维坐标,将方向余弦阵变换形式转变成四元数变换形式. 降次二次四元数变换形式,以便后续求解. 考虑不同星光矢量的权重,联立所有星光矢量的信息求解星敏感器三轴旋转角,给出解决三轴旋转角求解过程中的迭代不确定性和四元数矢量方向奇异性的具体方案. 将所提方法与传统方法的性能进行对比分析. 仿真结果表明,相比传统方法,所提方法具有更快的解算速度和更高的三轴旋转角求解精度.

关键词: 旋转角星敏感器四元数奇异性实时性    
Abstract:

In order to improve the real-time performance and solution accuracy of star sensor, based on multi-vector information, a quaternion representation method for solving three-axis rotation angle of star sensor was proposed, and the method was derived in detail theoretically. Based on the three-dimensional coordinates of a single starlight vector in celestial coordinate system and star sensor coordinate system, the direction cosine matrix transformation form was transformed into quaternion transformation form. The quadratic quaternion transformation form was reduced in order to facilitate the subsequent solution. Considering the weight of different starlight vectors, the information of all starlight vectors was combined to solve the three-axis rotation angle of the star sensor. A specific solution was given, aiming at the iteration uncertainty and the direction singularity of quaternion vector in the process of solving three-axis rotation angle, The performance of the proposed algorithm was compared with that of the traditional algorithm. Simulation results show that the proposed algorithm has faster solving speed and higher accuracy in solving three-axis rotation angle than the traditional algorithm.

Key words: rotation angle    star sensor    quaternion    singularity    real time
收稿日期: 2021-12-29 出版日期: 2023-01-03
CLC:  V 448.22  
基金资助: 航空科学基金资助项目(201808U8004)
通讯作者: 周召发     E-mail: 1020423896@qq.com;3199148797@qq.com
作者简介: 段辉(1996—),男,博士生,从事组合导航研究. orcid.org/0000-0003-3886-654X. E-mail: 1020423896@qq.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  
段辉
张志利
周召发
徐泽乾
赵芝谦
王韶迪

引用本文:

段辉,张志利,周召发,徐泽乾,赵芝谦,王韶迪. 多矢量信息下的星敏感器三轴旋转角求解方法[J]. 浙江大学学报(工学版), 2022, 56(12): 2514-2522.

Hui DUAN,Zhi-li ZHANG,Zhao-fa ZHOU,Ze-qian XU,Zhi-qian ZHAO,Shao-di WANG. Three-axis rotation angle solving method of star sensor under multi-vector information. Journal of ZheJiang University (Engineering Science), 2022, 56(12): 2514-2522.

链接本文:

https://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2022.12.021        https://www.zjujournals.com/eng/CN/Y2022/V56/I12/2514

图 1  星光矢量成像示意图
图 2  1.0×10−3噪声标准差下不同算法的三轴姿态角误差曲线
算法 σA/(°)
σs=1.0×10?2 σs=1.0×10?3 σs=1.0×10?4 σs=1.0×10?5
SVD 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
LS 3.679×10?1 3.794×10?2 4.286×10?3 4.622×10?4
QUEST 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
本研究 2.071×10?1 2.751×10?2 3.084×10?3 4.055×10?4
表 1  不同噪声标准差下不同算法的姿态角误差标准差
图 3  1.0×10−3噪声标准差下不同算法的时间消耗曲线
算法 t/s
σs=1×10?2 σs=1×10?3 σs=1×10?4 σs=1×10?5
SVD 6.021×10?5 5.971×10?5 6.153×10?5 6.568×10?5
LS 9.354×10?5 9.219×10?5 9.612×10?5 9.674×10?5
QUEST 5.721×10?5 5.671×10?5 5.953×10?5 5.368×10?5
本研究 3.284×10?5 3.322×10?5 3.268×10?5 3.109×10?5
表 2  不同噪声标准差下不同算法的耗时表
1 CHANG L B, QIN F J, LI A A novel backtracking scheme for attitude determination-based initial alignment[J]. IEEE Transactions on Automation Science and Engineering, 2015, 12 (1): 384- 390
doi: 10.1109/TASE.2014.2346581
2 DU S, GAO Y Inertial aided cycle slip detection and identification for integrated PPP GPS and INS[J]. Sensors, 2012, 12 (11): 14344- 14362
doi: 10.3390/s121114344
3 MARKLEY F L, MORTARI D How to estimate attitude from vector observations[J]. Advance Astronomy Science, 2000, 103: 1979- 1996
4 YANG Y, ZHOU Z An analytic solution to Wahba’s problem[J]. Aerospace Science and Technology, 2013, 30 (1): 46- 49
doi: 10.1016/j.ast.2013.07.002
5 SHUSTER M D, OH S D Three-axis attitude determination from vector observations[J]. Journal of Guidance Control, 1981, 4 (1): 70- 77
doi: 10.2514/3.19717
6 MORTARI D ESOQ: a closed-form solution to the Wahba problem[J]. The Journal of the Astronomy Sciences, 1997, 45: 195- 204
7 HORN R A, JOHNSON C R. Matrix analysis [M]. Cambridge: Cambridge University Press, 1985: 57-73.
8 FARRELL J L, STUELPNAGEL J C, WESSNER R H, et al A least squares estimate of spacecraft attitude[J]. SIAM Review, 1966, 8 (3): 384- 386
doi: 10.1137/1008080
9 ZHANG Y J, ZHENG M T, XIONG J X, et al On-orbit geometric calibration of ZY-3 three-linear array imagery with multistrip data sets[J]. IEEE Transactions on Geoscience and Remote Sensing, 2014, 52 (1): 224- 234
doi: 10.1109/TGRS.2013.2237781
10 RATNAWEERA A, HALGAMUGE S K, WATSON H C Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients[J]. IEEE Transactions on Evolutionary Computation, 2004, 8 (3): 240- 255
doi: 10.1109/TEVC.2004.826071
11 WU J, ZHOU Z B, GAO B, et al Fast linear quaternion attitude estimator using vector observations[J]. IEEE Transactions on Automation Science and Engineering, 2018, 15 (1): 307- 319
doi: 10.1109/TASE.2017.2699221
12 LUO L, HUANG Y L, ZHANG Z, et al A position loci-based in-motion initial alignment method for low-cost attitude and heading reference system[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 7500618
13 ZHOU X R, XU X, YAO Y Q, et al A robust quaternion Kalman filter method for MIMU/GPS in-motion alignment[J]. IEEE Transactions on Instrumentation and Measurement, 2021, 70: 8503109
14 FRASER C S, HANLEY H B Bias compensation in rational functions for Ikonos satellite imagery[J]. Photogrammetric Engineering and Remote Sensing, 2003, 69 (1): 53- 57
doi: 10.14358/PERS.69.1.53
15 WU Y H, GAO Y, LIN J W, et al Low-cost, high-performance monocular vision system for air bearing table attitude determination[J]. Journal of Spacecraft and Rockets, 2014, 51 (1): 66- 75
doi: 10.2514/1.A32465
16 WU J Real-time magnetometer disturbance estimation via online nonlinear programming[J]. IEEE Sensors Journal, 2019, 19 (12): 4405- 4411
doi: 10.1109/JSEN.2019.2901925
17 WU J, ZHOU Z B, FOURATE H, et al Generalized linear quaternion complementary filter for attitude estimation from multisensor observations: an optimization approach[J]. IEEE Transactions on Automation Science and Engineering, 2019, 16 (3): 1330- 1343
doi: 10.1109/TASE.2018.2888908
18 ZHANG G, JIANG Y H, LI D, et al In-orbit geometric calibration and validation of ZY-3 linear array sensors[J]. The Photogrammetric Record, 2014, 29 (145): 68- 88
doi: 10.1111/phor.12052
19 LEFFERTS E J, MARKLEY F L, SHUSTER M D Kalman filtering for spacecraft attitude estimation[J]. Journal of Guidance, 1982, 5 (5): 417- 429
doi: 10.2514/3.56190
20 LI J C, GAO W, ZHANG Y, et al Gradient descent optimization-based self-alignment method for stationary SINS[J]. IEEE Transactions on Instrumentation and Measurement, 2019, 68 (9): 3278- 3286
doi: 10.1109/TIM.2018.2878071
21 MORTARI D, ROMOLI A. StarNav III: a three field of view star tracker [C]// IEEE Aerospace Conference Proceeding. Big Sky: IEEE, 2002: 47-67.
22 DOUIK A, LIU X, BALLAL T, et al Precise 3-D GNSS attitude determination based on Riemannian manifold optimization algorithms[J]. IEEE Transactions on Signal Processing, 2020, 68: 284- 299
doi: 10.1109/TSP.2019.2959226
23 COLE C L, CRASSIDIS J L Fast star-pattern recognition using planar triangles[J]. Journal of Guidance, Control, and Dynamics, 2006, 29 (1): 64- 71
24 LIEBE C C Star trackers for attitude determination[J]. IEEE Aerospace and Electronic Systems Magazine, 1995, 10 (6): 10- 16
doi: 10.1109/62.387971
25 KUDVA P, THROCKMORTON A Attitude determination studies for the earth observation system AM1 (EOS-AM1) mission[J]. Journal of Guidance, Control, and Dynamic, 1996, 19 (6): 1326- 1331
doi: 10.2514/3.21789
[1] 吴骁航,马克茂. Student’s t滤波框架下的信息融合算法[J]. 浙江大学学报(工学版), 2020, 54(3): 581-588.
[2] 齐小刚, 王振宇, 刘立芳, 刘兴成, 马久龙. 无线传感器和执行器网络可靠高效路由[J]. 浙江大学学报(工学版), 2018, 52(10): 1964-1972.
[3] 苏星, 王慧泉, 金仲和. 实时高可靠综合电子系统的逻辑架构设计[J]. 浙江大学学报(工学版), 2017, 51(3): 628-636.
[4] 刘亚男,倪鹤鹏,张承瑞,王云飞,孙好春. 基于PC的运动视觉一体化开放控制平台设计[J]. 浙江大学学报(工学版), 2016, 50(7): 1381-1386.
[5] 黄水华,江沛,韦巍,项基,彭勇刚. 基于四元数的机械手姿态定向控制[J]. 浙江大学学报(工学版), 2016, 50(1): 173-179.
[6] 欧阳柳,徐进,龚小谨,刘济林. 基于不确定性分析的视觉里程计优化[J]. J4, 2012, 46(9): 1572-1579.
[7] 彭铁柱,李凌丰. 无奇异3UPS+1RPU新型并联机构[J]. J4, 2010, 44(11): 2056-2062.
[8] 庞茂 周晓军 胡宏伟 孟庆华. 基于解析小波变换的奇异性检测和特征提取[J]. J4, 2006, 40(11): 1994-1997.