Please wait a minute...
浙江大学学报(工学版)  2018, Vol. 52 Issue (10): 1964-1972    DOI: 10.3785/j.issn.1008-973X.2018.10.016
自动化技术     
无线传感器和执行器网络可靠高效路由
齐小刚1, 王振宇1, 刘立芳2, 刘兴成1, 马久龙1
1. 西安电子科技大学 数学与统计学院, 陕西 西安 710126;
2. 西安电子科技大学 计算机学院, 陕西 西安 710071
Reliable and efficient routing of wireless sensors and actuator networks
QI Xiao-gang1, WANG Zhen-yu1, LIU Li-fang2, LIU Xing-cheng1, MA Jiu-long1
1. School of Mathematics and Statistics, Xidian University, Xi'an 710126, China;
2. School of Computing, Xidian University, Xi'an 710071, China
 全文: PDF(1093 KB)   HTML
摘要:

针对当前的无线传感器与执行器网络(WSAN)技术缺乏实时性能以及工业无线环境的动态性问题,基于Kautz图设计容错、实时、高效、可靠的先验式路由FRER,不需要维持路由表,只利用节点IDs,根据节点IDs的匹配长度快速找到目标节点的最短路径.当节点故障时,不需要进行路径重挑,根据自身ID与目标节点ID的匹配,上一跳节点能够快速找到剩余节点的最短路径.考虑路径的多样性,不局限于Kautz拓扑,利用邻居节点信息拓展网络中路径的多样性.考虑链路故障,基于链路可用性历史信息组合多路径,保证在链路故障情况下网络维持可接受水平的路由路径可用性.实验结果表明,与REFER和Debruijn图相比,FRER在实时性、容错性和可靠性性能上优于两者.

Abstract:

A fault-tolerant, real-time, efficient and reliable prior route FRER was designed based on the Kautz graph in order to solve the problem of real-time in current wireless sensor and actuator network as well as the dynamic problem in industrial wireless environment. The method only uses node IDs rather than routing table. The shortest path from the target node can be found quickly according to the matching length of the node IDs. When nodes fail, upstream node can quickly find the shortest path of the remaining nodes by matching its ID and target node ID instead of reselecting the path. Considering the diversity of path, not limited to Kautz topology, neighbor node information was utilized to expand the diversity of paths in the network. Link availability based history information was used to combine multipath considering link failure in order to guarantee the availability of routing path with the acceptable levels of network. The experimental results show that FRER is superior to both of them with respect to real-time, fault-tolerance and reliability performance compared to REFER and Debruijn graph.

收稿日期: 2017-06-03 出版日期: 2018-10-11
CLC:  TP393  
基金资助:

国家自然科学基金资助项目(61572435,61877067);复杂电子系统仿真重点实验室基础研究基金资助项目(DXZT-JC-ZZ-2015-015);宁波市自然科学基金资助项目(2016A610035,2017A610119)

作者简介: 齐小刚(1973-),男,教授,博导,从事系统建模与故障诊断的研究.orcid.org/0000-0003-2208-0200.E-mail:xgqi@xidian.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
作者相关文章  

引用本文:

齐小刚, 王振宇, 刘立芳, 刘兴成, 马久龙. 无线传感器和执行器网络可靠高效路由[J]. 浙江大学学报(工学版), 2018, 52(10): 1964-1972.

QI Xiao-gang, WANG Zhen-yu, LIU Li-fang, LIU Xing-cheng, MA Jiu-long. Reliable and efficient routing of wireless sensors and actuator networks. JOURNAL OF ZHEJIANG UNIVERSITY (ENGINEERING SCIENCE), 2018, 52(10): 1964-1972.

链接本文:

http://www.zjujournals.com/eng/CN/10.3785/j.issn.1008-973X.2018.10.016        http://www.zjujournals.com/eng/CN/Y2018/V52/I10/1964

[1] CHACZKO Z, CHIU C, ASLANZADEH S, et al. Software infrastructure for wireless sensor and actuator networks[C]//Proceedings of the 21st International Conference on Systems Engineering (ICSEng). Las Vegas:IEEE, 2011:474-479.
[2] ZHU J, ZOU Y, ZHENG B. Physical-layer security and reliability challenges for industrial wireless sensor networks[J]. IEEE Access, 2017, 5(99):5313-5320.
[3] ZENG Y, LI D, VASILAKOS A V. Real-time data report and task execution in wireless sensor and actuator networks using self-aware mobile actuators[J]. Computer Communications, 2013, 36(9):988-997.
[4] LU C, SAIFULLAH A, LI B, et al. Real-time wireless sensor-actuator networks for industrial cyber-physical systems[J]. Proceedings of the IEEE, 2016, 104(5):1013-1024.
[5] NATH S, BANIK S, SEAL A, et al. Optimizing MANET routing in AODV:an hybridization approach of ACO and firefly algorithm[C]//20162nd International Conference on Research in Computational Intelligence and Communication Networks (ICRCICN). Kolkata:IEEE, 2016:122-127.
[6] BAKHT H. A comparative study of MAODDP with ZRP and DSR routing protocols for mobile AD-HOC network[J]. Computer Science and Telecommunications, 2016, 1(47):64-68.
[7] NIU J, CHENG L, GU Y, et al. R3E:Reliable reactive routing enhancement for wireless sensor networks[J]. IEEE Transactions on Industrial Informatics, 2014, 10(1):784-794.
[8] PRADITTASNEE L, CAMTEPE S, TIAN Y C. Efficient route update and maintenance for reliable routing in large-scale sensor networks[J]. IEEE Transactions on Industrial Informatics, 2017, 13(1):144-156.
[9] SEPULCRE M, GOZALVEZ J, COLL-PERALES B. Multipath QoS-driven routing protocol for industrial wireless networks[J]. Journal of Network and Computer Applications, 2016, 8(74):121-132.
[10] LI Z, SHEN H. A QoS-oriented distributed routing protocol for hybrid wireless networks[J]. IEEE Transactions on Mobile Computing, 2014, 13(3):693-708.
[11] LI D, LU X, WU J, et al. A scalable constant degree and low congestion DHT scheme based on Kautz[C]//IEEE Conference on Computation Communication. Miami:IEEE, 2005:1677-1688.
[12] FABREGA J, MARTÍ-FARRÉ J, MUNOZ X. Layer structure of DeBruijn and Kautz digraphs:an application to deflection routing[J]. Electronic Notes in Discrete Mathematics, 2016, 9(54):157-162.
[13] GUO D, LIU Y, KI X. Bake:a balanced kautz tree structure for peer-to-peer networks[C]//The 27th Conference on Computer Communications. Phoenix:IEEE, 2008:351-355.
[14] ZUO K, HU D, WANG H, et al. An efficient clustering scheme in mobile peer-to-peer networks[C]//International Conference International Conference on Information Networking. Busan, South Korea:IEEE, 2008:1-5.
[15] RAVIKUMAR C P, RAI T, VERMA V. Kautz graphs as attractive logical topologies in multihop lightwave networks[J]. Elsevier Science, 1997, 20(14):1259-1270.
[16] CHIANG W K, CHEN R J. Distributed fault-tolerant routing in Kautz networks[J]. Parallel Distributed Computing, 1994, 6(20):99-106.
[17] SHEN H, LI Z. A Kautz-based wireless sensor and actuator network for real-time, fault-tolerant and energy-efficient transmission[J]. IEEE Transactions on Mobile Computing, 2016, 15(1):1-16.
[18] 刘盛云. 基于Kautz图的数据中心网络拓扑结构研究[D]. 长沙:国防科学技术大学, 2010:1-67. LIU Sheng-yun. Research on the topology of Kautz based data centers network[D]. Changsha:National University of Defense Technology, 2010:1-67.
[19] GROSS J L, YELLEN J. Graph theory and its applications[M].[S. 1.]:CRC, 2005:1-767.

[1] 刘炜伦, 张衡阳, 郑博, 高维廷. 优先级区分服务的机载网络媒质接入控制协议[J]. 浙江大学学报(工学版), 2019, 53(1): 99-106.
[2] 赖晓翰, 文昊翔, 陈隆道. 潮间带无线传感器网络路由算法[J]. 浙江大学学报(工学版), 2018, 52(12): 2414-2422.
[3] 刘臻, 武泽慧, 曹琰, 魏强. 基于漏洞指纹的软件脆弱性代码复用检测方法[J]. 浙江大学学报(工学版), 2018, 52(11): 2180-2190.
[4] 胡钢, 徐翔, 过秀成. 基于解释结构模型的复杂网络节点重要性计算[J]. 浙江大学学报(工学版), 2018, 52(10): 1989-1997.
[5] 任智源, 侯向往, 郭凯, 张海林, 陈晨. 分布式卫星云雾网络及时延与能耗策略[J]. 浙江大学学报(工学版), 2018, 52(8): 1474-1481.
[6] 贾文超, 胡荣贵, 施凡, 许成喜. 多特征关联的注入型威胁检测方法[J]. 浙江大学学报(工学版), 2018, 52(3): 524-530.
[7] 李冰, 金涛, 陈帅. 提高SRAM PUFs密钥生成可靠性的方法[J]. 浙江大学学报(工学版), 2018, 52(1): 133-141.
[8] 余洋, 夏春和, 胡潇云. 采用混和路径攻击图的防御方案生成方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1745-1759.
[9] 罗友强, 刘胜利, 颜猛, 武东英. 基于通信行为分析的DNS隧道木马检测方法[J]. 浙江大学学报(工学版), 2017, 51(9): 1780-1787.
[10] 尹可挺, 周波, 张帅, 徐斌, 陈一稀, 江丹. Web服务组合中基于QoS的自底向上服务替换[J]. J4, 2010, 44(4): 700-709.
[11] 王瑞琴, 孔繁胜, 潘俊. 基于WordNet的无导词义消歧方法[J]. J4, 2010, 44(4): 732-737.
[12] 周强, 应晶, 吴明晖. 基于特征分类的机会网络多因素预测路由[J]. J4, 2010, 44(3): 413-419.
[13] 欧阳杨, 陈宇峰, 陈溪源, 等. 教育语义网中的知识领域本体建模[J]. J4, 2009, 43(09): 1591-1596.
[14] 孔祥杰, 沈国江, 梁同海. 具有公交优先的路网交通流智能协调控制[J]. J4, 2009, 43(6): 1026-1031.
[15] 王健, 孙建伶, 王新宇, 等. 软件容错模型中的部分抢占实时调度算法[J]. J4, 2009, 43(6): 1047-1052.